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The major point of this project is to get a better understanding of quantum computing,
primarily superposition and entanglement. The process will start with connecting Raspberry Pi to
IBM’s Quantum Computer to simulate the behavior of qubits with Qiskit programming language. We
will show the superposition and entanglement principles with Qiskit, and proceed with more complex
simulations that also implement quantum computing such as random number generator and qubit
reduction with Variational Monte Carlo. The success of our project is determined by the management
of IBM connection and the correct implementation of Qubit codes.

Key Words: Quantum, Qubit, Qiskit, Raspberry Pi, IBM, Quantum Computing, Quantum
Mechanics, QRasp
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1. OVERVIEW

This project is an implementation of various concepts to understand quantum computing. We
will be trying to build three concepts. The first one is creating superposition and entanglement using
two qubits. After that, we will measure the results. The expected outcome for this one of states from
00 or 11. When we understand the concept of quantum computing and finished the first part, we will
start to build more complex simulation which is quantum random number generation. If we
successfully finish the random number generation, we will try to implement Variational Monte Carlo

to reduce the number of qubits.

1.1. Identification of the need

In this project, we will try to implement the some algorithms and applications of the quantum
computing. To impelement algorithms and applications we need to understand the concept of
guantum computing. Quantum computing can be divided into two parts as theoretical and practical
implementation. Firstly, we need to understand the theoritical part of the algorithms and applications,
this includes complex mathematics and linear algebra. Second part which is the practical part is
implementation of the quantum circuits to compare the results with the theoretical part. In the bottom
of the circuits, they are unitary matrixes which is used to process on qubits. Due to fact that we can’t
build our own quantum computer we will use the raspberry pi to simulate. When raspberry pi
computational power is not enough, it is possible to use IBM’s quantum computer by applying

through IBM system.

1.2. Definition of the problem

Monte Carlo simulation gives a random choice for each activity which take place and repeats
this process to get a probability distribution. Monte Carlo method is used in optimization, numerical
integration in Engineering, Finance and many fields of physics and mathematics. The main constraint
of this method is that it requires huge amounts of computational power. Therefore, in classical
computing this method is not very efficient to implement. On the other hand, Quantum computers
can speed up this process but still there are some measures to be taken into consideration. The number
of needed qubits is proportional to the number of random numbers to get the dimension of the integral.
High dimensional integrations require high number of random numbers. Quantum computers of today
still lack the necessary qubit number. Obligators up to 10°%) may be needed for computation
problems for large portfolios in finance problems as an example whereas largest quantum computer
of today has only the qubit number of O(10). Therefore, number of qubits needs to be reduced to be

able to perform these processes.



1.2.1. Functional requirements

e Raspberry Pi must be functional. The connection between Raspberry Pi and IBM Quantum
Computer must be made.

e Qiskit libraries should be installed. Superposition and entanglement must be shown through
Qiskit code.

1.2.2. Performance requirements

The experiments of superposition and entanglement must either be impracticable for standard
computers or must execute faster than standard computers.
The codes executed by Qiskit should run in a faster time and must have a higher accuracy rate

than that of standard computers if such a comparison can be made.

1.2.3. Constraints

The main constraint is the Raspberry Pi’s computational power. Due to lack of Random Access
Memory (RAM), number of Qubits that can be used to simulate tasks is limited. Thus, design of the
solutions should be carefully designed with inefficacy of RAM in mind.

1.3. Conceptual solutions

We have three conceptual solutions for our topic respectively two qubit superposition and
entanglement, random number generation and implementing Variatianol Monte Carlo with random
number generation. We will use Raspberry Pi and SenseHAT 8x8 pixel LED to demonstrate our
results of the implementations.

First one is creating the superposition of two qubits and entanglement. Expected results is
50% probability of qubits state being 00 or 11. Since qubits are in superposition we cannot know
what is the output until their state is measured. We plan to see one of the states on 8x8 pixel LED.

Our second conceptual solution is reducing the number of qubits by building a quantum random
number generator. To for implementation on Monte Carlo simulation for the reduction of qubits and
thus speeding the process. In order to over come this constraints we will first imply Monte Carlo
Simulation techniques and later by implementing pseudo-random number generator (PRNG)
estimated average integrand values in order to qunatum circuits for the decrement of the number of

qubits required

1.3.1. Literature Review

The smallest unit of data storage in quantum computer is called Qubit as can be seen in Figure

1. Due to qubits are sensitive in nature the information stored in them is unstable [1]. Therefore,



quantum computers such as IBM-Q are operating in very cold temperature and vacuumed place. A
qubit can exists in both states simultaneously except logical state 0 or 1. This existance called
superposition. During superposition, it is impossible to know qubit’s state until it is measured. In
other words, a qubit can exits in both states which is called superposition until it is measured. A
quntum computer can be considered as a network which combination of a quantum logic gates. Each
gate carry out an basic unitary operation on one or more than one qubits [4]. There are lots of gates
which be seen in Appendix A.

The simplest quantum logic gate is NOT gate which performs a operation on qubit to change
its states. It can be also extended to CNOT and CCNOT. These gates are named respectively
Controlled NOT gate and Controlled Controlled NOT gate. They perform the NOT operation on qubit
if control qubit is one. There is also important logic gate which is Hadamard gate that creates a

superposition. The Hadamard gate will be used in first conceptual solution for our topic [1] [4].

2= 1)

Figure 1. Representation of a Qubit as Bloch Sphere

Monte Carlo Methods

Monte Carlo protocols are a type of computational process that uses repeated random
sampling to produce numerical results. The basic idea is to employ randomness to solve problems
that are in principle deterministic. They're frequently utilized in physical and mathematical problems,
and they're especially valuable when other approaches are difficult or impossible to use. The three

main applications of Monte Carlo methods are optimization, numerical integration, and generating
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draws from a probability distribution.

Monte Carlo methods are effective for simulating systems with large numbers of associated
degrees of freedom, like disorganized elements and fluids, cellular structures and strongly linked
solids, in physics problems. Modeling phenomena via inputs with high ambiguity, such as the
computation of risk in business and multidimensional definite integrals evaluation with difficult
boundary conditions in mathematics, are two further examples. Monte Carlo—based predictions of
failure, cost overruns, and schedule overruns are typically better than human intuition or similar "soft"

methodologies when applied to systems engineering challenges.

Quantum computers are known to be faster than their conventional counterparts at Monte
Carlo simulation. There have already been various proposals for using the quantum algorithm to solve
real-world problems, such as quantitative finance. Because many problems in finance where Monte
Carlo simulation is applied, problem involves highly high-dimensional integrations, such as risk
measurement of credit portfolios, numerous random values are necessary to generate one sample
value of the integrand. As a result, in the naive approach, where a quantum register is allocated each
random number, the required qubit number is too huge. If a calculation comparable to the classical
one, estimating the mean of integrand values sampled by a pseudo-random-number generator (PRNG)
executed on a quantum circuit, qubits can be lowered while maintaining quantum speed up. It is
possible to offer not only an overview of the concept, but also a practical implementation of PRNG
and its application to credit risk measurement. In fact, lowering the number of qubits is a trade-off
against increasing circuit depth. As a result, while a complete decrease may be impractical, a trade-
off between speed and memory space will be critical in adjusting calculation settings based on
machine specs if a quantum computer is utilized to run large-scale Monte Carlo simulations in the

upcoming years.



RRrn1 dist

fNI'ii 1

RRN,Npan dist

_EIJ,'["L - 1 T ‘fNId.Il >'”iut

11)’[’}1 ‘h}".u \V J‘ - -fNra,n |U> + \V fNra.n |J‘>

Figure 2. Circuits for the quantum algorithm for Monte Carlo. [5]

1.3.2. Concepts

There are two possible concepts to implement our project. First one is Raspberry Pi and second
one is IBM’s Quantum Computer.

Raspberry Pi is a small single-board computer which is used for general purposes. We will
use it in our project to simulate some quantum computing concepts. However, due to fact that it is
still classical computer it has less computational power due to RAM (Random Access Memory) size.
It limits the number of qubit that can be used in quantum computing.

On the other hand, IBM Quantum Computer is much more powerfull due to fact that it is a
real quantum computer. It can compute more than 100 qubits with the latest developments.

Implementing complex quantum computing concepts will require to use IBM’s Quantum Computer.

Table 1. Comparison of the two conceptual solutions.

Raspberry Pi | IBM Quantum Computer
Cost high low
Complexity | medium low
Performance | medium high
Features high high

1.4. Physical architecture

Quantum von Neumann architecture:

A quantum bus system allows quantum information to be moved between the various

components of a quantum computer. The quantum arithmetic logic unit (QALU), which is the most
5



hardware demanding portion of the quantum computer because quantum gate operations are
performed here, is where quantum information is manipulated. Quantum data is stored in a quantum
memory, which need to depend on multiplexing technology to provide huge storage capacity. In
addition, an input and output region serves as an interface to the classical world, where the qubit state

can be detected or started.

Control Unit

Classic

Input and Output

7
S N

Quantum Arithmetic Logic Unit Quantum Memory

Quantum Bus Sysf(éml 1

Figure 3. The Quantum von Neumann architecture. [1]

Quantum

The quantum von Neumann architecture is based on the same concepts as the classical version.
A quantum von Neumann machine conducts a sequence of quantum gate operations by loading the
qubits to be manipulated into the QALU's quantum registers. The quantum register length can be as
long as you want it to be. To entangle the two qubits from arbitrary positions in the memory, they are
loaded from the quantum memory into the QALU, where gate operations are performed. After the
guantum gate operations, the qubits can either stay in the QALU for extra processing or be placed
back into the quantum memory. To detect quantum states, the appropriate quantum information can
be transmitted to an output, or detecting, region. It is possible to execute QIP in the QALU and
detection in the output region at the same time since this detection zone is independent from the
QALU.

After detecting the quantum state, the qubits can be relocated to an input region to be
initialized into a single state before being returned to the quantum memory (now initialized). If a more
complicated starting state is required, such as an entangled state, the initialized qubits can be placed
in the QALU, which performs quantum gate operations to generate the desired first/inital quantum
state.

Quantum Memory Region:

Field effect transistor (FET) and a capacitor, as shown in figure a, are the components of a
dynamic RAM (DRAM) needed to store one bit of information in a traditional computer. The FET
used to access the DRAM cell is controlled by digital multiplexing logic. Because of the minimal

hardware demand per bit, DRAM chips can store a lot of data.
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Figure 4. A memory cell of a DRAM(a) and multiplexing quantum memory(b). [1]

Quantum data storage capabilities of significant size must be realized in large-scale quantum
computers while the quantum memory hardware requirement is modest (classical). Rent's rule would
be violated if hardware demand expanded in lockstep with the number of qubits stored, and control
hardware would become too sophisticated and costly for large-scale quantum computers with
thousands or millions of qubits.

Multiplexing circuits, as shown in the figure b upside, can be used to reduce hardware
consumption. As a result, the capacity to store quantum data/information with a group of parameters
that remain constant is required.

To store an ion chain in a segmented Paul trap, for example, all that is required is a negative
DC voltage at the ion string's position and positive DC voltages surrounding it, forming an axial
confinement for the ion string. In theory, these few voltages may be utilized to store an infinite
number of ion strings. This collection of parameters (for trapped ions, a set of DC voltages) is applied
to all qubits in the quantum memory during storage. Multiplexing technology allows a shift of this
set of parameters to another set that can be adjusted independently in order to access a specific
memory cell. This set of parameters allows the quantum information of any memory cell to be moved
out of the memory cell out of the quantum memory.

The quantum bus system for quantum information transit, which must be conducted with high
fidelity to allow fault-tolerant operation, is one of the most important components of this quantum
von Neumann architecture.

Quantum information transport:

Because quantum information cannot be copied, it can only be conveyed via quantum
information. Moving qubits physically, quantum teleportation, and photon coupling are all possible.
In atomic or molecular qubit systems, quantum information can be transferred by physically moving
the qubit from one spatial point to another. For example, in segmented trapped ion systems, adjust
the confining axial DC potential to shift Paul traps, ions, or ion strings. In general, solid-state systems
are incapable of such mobility. Solid state technologies, such as spins in silicon, do, nevertheless,
allow for the movement of qubits.

An entangled qubit pair, each of which is at the destination, is required for quantum

7



teleportation. The qubit at the destination, from which quantum information is extracted, is the first,
while the qubit at the source is the second. When a conditional quantum state is generated, it is also
necessary to perform a gate, which needs a qubit measurement across a classical channel to the
destination. Because quantum data must be stored and accessed in the quantum memory, each site
must have read-out and quantum-gate capabilities. This is in direct contradiction to DiVincenzo's
requirement for particular hardware for each criterion, which necessitates more hardware than
physical movement. However, in a number of solid-state systems, it could be an effective method.

Qubits to photons mapping has been demonstrated in atomic or molecule gubit systems, as
well as solid-state systems. As with quantum teleportation, this approach demands quantum logic at
each memory location and is hence hardware heavy. The capacity to transition from one qubit system
to another is one of the benefits of quantum information transit via quantum teleportation or photon
mapping over qubit mobility. QIP might be performed, for example, using superconducting circuit
QED systems, and nitrogen vacancy centers in diamond could be exploited for long-term quantum
memory storage.

Because quantum gate operations and quantum state readout are needed at each point in the
quantum memory, these technologies have a higher memory hardware requirement than systems that
enable qubit mobility. Quantum teleportation and photon mapping will be restricted to small and
medium-scale devices if this challenge cannot be overcome. Large-scale systems with low hardware
needs per stored qubit may be required to transfer the qubits in the quantum computer.

The SenseHAT 8x8 pixel LED which is drived by Raspberry Pi will be used to display results
of the computation. We will observe the output of the quantum circuit which will be used for random

number generation. The interface diagram can be seen in Figure 2.

System

: 8x8 Pixel LED
A A
o . f _ Power
Controller 2 . S Controller i
[ . Signa
Raspberry Pi i i Display Unit

FDU

v

Figure 5. Interface diagram for the system.
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When the device turned on it will check firstly is device successfully booted. If not booted, it
we will reboot the system until device is ready. When device ready to use, qgiskit program that we
codded will be run. If program successfully run, device will send the results to 8x8 pixel LED to
display. If everything successfully done, program can be re-run or device can be turned off. Our

system will work as it has been shown in Figure 3.

Reboot device

Mo

h 4

Is device
ready?

Fun the giskit
program

.T.

Is program run

Turn on device
successfuly?

Mo

I= resulis

in?
Fun again® displayed?

«—— Display the Results

Mo

Turn off device

Figure 6. Process chart for the system.



2. WORK PLAN

2.1. Work Breakdown Structure (WBS)

The necessary works break down into two sub systems as hardware and software as in Figure
4. The main challenging part is the software development where we will be focusing on implementing

the study of random number generation in quantum computer.

1.Quantum
Computing

Y

1.1 1BM connection 1.2 Qiskit code

with raspberry pi

v L v L

1.2.2 debugging / }

1.1.2 assemble /
testing

1.2.1 configuration /

coding deployment

1.1.1 ordering parts}

Figure 7. Work breakdown structure for the project.

2.2. Responsibility Matrix (RM)

In this project, we have divided into two subsystems as Computer Engineering and Electrical
and Electronics Engineering. Both departments have people will be responsible from writing report
and management. The responsibility matrix can be investigated in Table 2.

Electrical and Electronics Engineers will be responsible from the studying Quantum
Information Processing for designing quantum circuit.

Computer Engineers will be responsible from configuration of Raspberry Pi for quantum
simulation and implementing the code for the quantum circuit. Furthermore, computer engineers will
be implementing Quantum Information Processing study which is done by Electrical and Electronics

Engineers.

10



Table 2. Responsibility Matrix for the team

Engineering

Electrical & Electronics

Computer Engineering

~

1.2.2 debugging /

deployment

1.2.2.2 testing /
coding

11

Figure 8. The project network.

e anpe olga g e ad
Management R S R
Reporting S S R S
Configuration of Rapsberry Pi R S S
Quantum Information Processing R S
Quantum circuit design S R
Impelementing the Qiskit Code R
Implementing Random Number Generation S R
2.3. Project Network (PN)R
1.1.1 ordering parts > 1'1'1'%;,3?;”1‘3‘9!
Hardware integration
and testing /
optimization
1.1.2 assemble / 1.1.2.2 assemble /
testing i testing
Fullgggecli\’m;nlgaﬁisk\t Malnten._ancg and
connection optimization
Y g T
1.2.1 configuration / 1.2.1.2 testing / v
coding 7 coding ( \
Configuring protocols, end
qiskit code /
optimization \ J




2.4. Gantt char

Table 3. Gantt chart for the materialisation phase of the project.

Tasks

Guantum Information Processing
Quantum Circuit Design
Ordering Parts

Integration

Testing and optimization

Raspberry Pi Configuration

Implementing the Qiskit Code

Implementing Random Number Generation

Testing, debugging and optimization
Product Management

Management

Reporting

Documentation and Presentation
Document the build
Document the verification process
Draft the report
Complete the report
Prepare and give the final presentation
Exhibition

Weeks
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2.5. Costs

Cost of the Raspberry Pi and pixel LED is affected with exchange rates. So, prices could be
different when placing order.
Table 4. Costs

Cost
SenseHAT 8x8 Pixel Led 450,00
Total 450,00

2.6. Risk assessment

There are several risks which cannot be neglected. It is difficult to measure how much time we
need to complete our quantum circuit construction and implementing it in giskit, since the python
code heavily rely on constructed circuit. Furthermore, this, also, leads to failure of integration of
subsystem which is again important to test project.

Since this project will be implemented on Raspberry Pi, it is difficult the RAM will be enough
for computational power. If it is not enough, we will use IBM-Q which is a real quantum computer
built by IBM. If we cannot connect to the IBM-Q only choice is the use our personal computer which

RAM can be increase if needed.

Table 5. Risk assessment

Failure Event Probability |Severity [Risk Level |Plan of Action

Covid-19 Lockdown Possible Minor Low Online systems will be used

Failure of Integration of Possible Major High Consultancy will be received from professionals
Subsystems in the field

Raspberry Piand 8x8 Led |Possible Minor Low Connecting to IBM-Q remotely

malfunction

Bugs Likely Moderate [High Solving bugs

Unable to connect IBM-Q |Possible Minor Low Using personal computers for simulation
remotely

Failure of construction of  |Possible Major High Consultancy will be received from professionals
quantum circuit in the field

13




3. SUB-SYSTEMS

3.1. Electrical & Electronics Engineering
3.1.1. Requirements

Since Electrical & Electronics Engineering will be responsible from the Raspberry Pi
configuration and will be developing quantum computing solutions with Computer Engineering sub-
system. Necessary information related to Raspberry Pi and Qiskit should be know by sub-system. To
build solutions using Qiskit every sub-system member should be aware of the algorithms of quantum

computing and the Qiskit quantum gates.

3.1.2. Technologies and methods

Raspberry Pi is a name for series of single-board computers developed by Raspberry Pi
Foundation. Raspberry Pi is a very cheap computer that runs Linux operating system while providing
a set of GPI1O (General Purpose Input/Output) pins. It has many use of areas from basic learn purpose
to implementing complex 10T solutions.

The quantum computer is composition of quantum logic gates. There are many gates which
performing an elementary unitary operation on qubits. The qubit is the basis unit of a information like
bit in the classical computer. This qubit’s behaviour differs from classical bits while representing a 1
bit information. Unlikely to classical bits qubit also able to exists in superposition. The superposition
IS a state that qubit can be exists as a 0 and 1 at the same time [3] [7].

In quantum computing states are represented with vector called statevectors. The simple
quantum logic gates’ statevectors shown in Appendix A. The NOT gate is the simplest gate which
changes the state of the qubit. If state of the qubit is O, it is changed to 1 and vice versa. There are
two more NOT gates,which they have control qubit(s), such as CNOT and CCNOT. The operation
of changing state of the qubit is controlled by another qubit or qubits. If control qubit’s state is 1 the
target qubit’s state is changed, if control qubit is not in state O target qubit’s state stays still. One of
the important quantum logic gates is Hadamard gate which is used to create superposition [1] [4].

3.1.3. Conceptualization

Raspberry Pi is a small computer that runs on Linux and is used in areas such as robotics. IBM
Quantum Composer and Lab is a hardware, made by quantum circuits and runs on multiple machines,
that can be remotely accessed via IBM Cloud, or via state-of-the-art software. Connection to IBM
Quantum computer with Raspberry is generally named like RasQberry or Qrasp.

For connection, a raspberry and a Sense HAT LED display is used. The process starts with
setting up Raspberry Pi, Python environment, instillation of necessary dependencies, Qiskit and so

14



on. After the setup of Jupyter Notebook for Qiskit on Raspberry Pi, commands for IBM Quantum
providers and backends are executed. After this, Qiskit files are available for execution. With
installation and enabling of Sense HAT the set up and configurations are done. Most of this process
is open-source and if any problems arise, they will be solved depending on the error such as running

different commands on shell, upgrading of Raspberry Pi system, using Sense HAT emulator.

3.1.4. Physical architecture

We will be using Raspberry Pi 4 and 8x8 pixel LED to obsver outcomes of the implementation

of conceptual solutions. Corresponding diagram for the system can be seen in Fingure 7.

System

: 2x8 Pixel LED
F Y F Y
» —_ Power
Contreller - > Controller
1 . Signa
Raspberry Pi | Display Unit |

> FDU

Figure 9. Interface diagram for the system

When Figure 8 is investigated, it is seen that when device turned on system will be checked
the device ready to operate if not it will try to reboot device. When device is ready, Qiskit program
corresponding to our project will be run and it will be check whether the program successfully run or
not. If it is run successfully, we will display the result on 8x8 LED, if it is not displayed program will
run again. When all program successfully worked, it is up to user to run program again to see different

outputs or turn off the device.

15



— Reboot device

Mo

¥

|5 device
ready?

Run the giskit
program

T

|s program run

Turn on device
successfuly?

Mo

Is results

in?
Run again displayed?

«—— Display the Results

Mo

Turn off device

Figure 10. Process chart for the system

3.1.5. Materialization

Since our project rely on construction and implementing quantum circuit and software. We
will only use Raspberry Pi 4 and 8x8 pixel LED as materials. The 8x8 pixel LED will be connected
to Raspberry Pi 4 and will be drived by Raspberry Pi. As Electrical and Electronics Engineers, we
firstly set up the raspberry pi later we combined the SenseHat with Raspberry Pi. Since our part
finished, we started to help Computer Engineers while they are programming. In order to achieve our
goals we proceed step by step from fundamentals to complex implementation.

Superposition is where the quantum states of a physical system is added together, giving an
unknown system of probability until it is observed. It is demonstrated by Schrodinger’s Wave
Equations and explained by the renowned Schrédinger’s Cat.

Yl 2 52,0,
in()q[,(.c,t) : k"0 w(br:?,t)

ot 2m  Ox?

+ V(z,t) Y(x,t)

In a quantumly entangled group of particles measurements of momentum, spin and
polarization are correlated. No matter the distance, they can show the perfectly correlated values of
these measurements, if this is the case information shall travel instantaneously but according to
relativistic theory this is a violation of the physical laws of the universe, therefore Albert Einstein
famously called this phenomenon “Spooky action at a distance” and ridiculed the theory saying that
the formulations must have been incomplete. Nevertheless, this phenomenon today constitutes one
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of the main pillars of quantum computing and its implementation.

Firstly, 2 qubit entanglement and superposition circuits are implemented on jupyter notebook
and observed the results programmatically. The first implementation of the project was 2 qubit
entanglement. To achieve the entanglement, we applied respectively Hadamard Gate to first qubit
and CNOT Gate to second qubit. After that we measured the qubits. The circuit drawing by of the
entanglement in qgiskit can be seen in figure 11.

gl 0: 4 E | M
- |
gl 1: X M
_ /|
cu £
1 1

Figure 11. 2 Qubit entanglement circuit.

It is observed that the results were close to %50 probability of occurance of one state. The

results can be seen in figure 12. These results are subject to change when running the simulation.

{'11': 486, '00': 538}

Figure 12. 2 Qubit entanglement results.

Later, we constructed the superposition circuit by using quantum gates on jupyter notebook
as shown in figure 13. In order to construct the circuit, we applied Hadamard Gate to both qubits.

gl O: 4 E HMPF—
gl 1: 4 E
Ccu Z

Figure 13. 2 Qubit superposition circuit.

Compared to entanglement, the results show that each states’ probability close to %25 as can
be seen in figure 14.

{'11°: 273, 'e1': 266, 'e@': 239, '1@': 246}
Figure 14. 2 Qubit superposition results.

Furthermore, when we finished the 2 qubit superposition and entanglement we further
17



constructed the 3 qubit versions of both of them. Since increase in qubit number doesn’t affect the
probability of entanglement, main difference was in superposition. Each states’ probability changes
to %12.5 from %25 since the state number doubled compared to 2 qubit.

In order to construct the circuit for 3 qubit entanglement one more CNOT Gate added. Which
1s affecting the third qubit’s state when second qubit’s state changed. This circuit let us observe the
probability of occurrence of 000 or 111 states. Below, the circuit for 3 qubit entanglement is shown
in figure 15.

Q
(.
b

Lad

- =
2, - L

Figure 15. 3 Qubit entanglement circuit.

Since the probability of occurrence is %50 theoretically any of the states from 000 or 111.
Results are close to the each other. Later we constructed the circuit for 3 qubit superposition which
is let the probability of occurrence change from %25 to %12.5 due to state number is doubled. In
order to construct circuit we applied Hadamard Gate to the third qubit. The circuit can be observed
in figure 16.

gl 0O: 4 E HM

|
gl 1: 4 E M
gl 2: 4 H

Lad

- -

_
D

Figure 16. 3 Qubit superposition circuit.

Finally, Computer Engineer programmed algorithm to show the results on SenseHAT.

(Algoritma anlatilacak ama tam degil genel hatlariyla bilgi verilmesi gerek)

3.1.6. Evaluation

At the first step of test, we will run example codes to see if our integration of system working
18



properly. When we see that system works under preferred conditions, we will start to implement our
project step by step. Each step will be tested when the step is done. Expected outcomes of the project
for each conceptual solution is differs. For two qubit superposition and entanglement simulations
expected outcome is 00 or 11 with probability of 50%. If the result is one of the states that can be 00

or 11, program is working as intended.

3.2. Computer Engineering
3.2.1. Requirements

Computer Engineering will handle the programming and software development relying on
guantum mechanics and states with correlation in Electrics & Electronical Engineering department.
This phases will be demonstrated on Raspberry Pi boards and these boards will be programmed using

QISKIT software development kit and Python programming language.

3.2.2. Technologies and methods

QISKIT is a free, open-source software development kit for dealing with quantum computers
at the circuit, pulse, and algorithm level. It includes tools for writing and altering quantum programs,
as well as running them on IBM Quantum Experience prototype quantum devices or local computer
simulators.

Python is a dynamically semantic, interpreted, object-oriented high-level programming
language. Its high-level built-in data structures, together with dynamic typing and dynamic binding,
making it ideal for Rapid Application Development and as a scripting or glue language for connecting
existing components.

Machine learning is a branch of artificial intelligence (Al) and computer science which
focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving
its accuracy. Machine learning starts with data The data is gathered and prepared to be used as training
data, or the information the machine learning model will be trained on. The more data, the better the

program.
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Quantum Machine Learning is constructed on two concepts : hybrid quantum-classical models
and quantum data. Quantum data is any data source that occurs in a natural or artificial quantum
system. This can be data generated by a quantum computer.

Algoritmhs
A. Deutsch-Jozsa Algorithm

Deutsch-Jozsa Problem

A concealed Boolean function f is supplied to us, which takes a sequence as input and returns either

0 or 1, as follows:

Ff{zo,z1,22,...}) » 0orl, wherez,is0or1

The given Boolean function has the feature of being guaranteed to be either balanced or constant. For
any input, a constant method returns all Os or all 1, whereas a balanced program runs Os for half of

all entries and 1s with the other half.

The Classical Solution

In the best case scenario, two queries to the oracle can identify whether the concealed Boolean
equation, f(x), is balanced: for example, if there are both (0,0,0,...)—0 and f(1,0,0,...)—1, it is known
that the function is balanced because there are two different outputs.

In the worst-case scenario, if the same result for each input is gotten, exactly half of all
potential inputs plus one have to be tested to be sure that f(x) is constant. 2(n1)+1 trial inputs are
required to be positive that f(x) is constant in the worst scenario, because the set of all possible inputs
is 2n. If 8 of the 16 possible options are checked for a 4-bit string and obtain all Os, it is still feasible
that the 9th input yields a 1 and f(x) is balanced. This is a very extremely rare event in terms of

probability.

Peonstant(k) =1 — forl<k<2"!

2k—1

In reality, if we were above x percent certain, we could truncate our classical algorithm early.
However, if we want to be absolutely certain, we'll need to verify 2(n1)+1 inputs.
The Quantum Solution

This problem can be solved with 100 percent certainty using a quantum computer after only
one call to the function f(x), as long as the function f is implemented as a quantum oracle that transfers
the state [x)|y) to [x)|ly@f(x)), where is addition modulo 2. The Deutsch-Jozsa algorithm's generic

circuit is shown below.
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B. The Bernstein-Vazirani Algorithm

The Bernstein-Vazirani Problem

It is given another black-box function, f, which accepts a string of bits (x) as input and returns either

0 or 1, as follows:

f{zo,z1,29,...}) = 0or 1 wherez, isOor 1

Rather than being balanced or constant, as in the Deutsch-Jozsa issue, the function must now
return the bitwise product of the input with some string, s. To put it another way, given an input X,
f(x)=sx (mod 2). It is expected that s will be discovered. The Bernstein-Vazirani oracle looks like this

as a standard reversible circuit;

N7 s-x mod 2

The Classical Solution

Classically, the oracle returns:

fs(x)=s-z mod 2

Given an x as an input. By querying the oracle with the following sequence of inputs, the concealed

bit string s can be revealed:
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Input(x)

100...0

010...0

001...0

000..1

Where each query yields a distinct piece of data (the bit si). For example, x = 1000...0 can be
used to determine the least relevant bit of s, and x = 0100...0 can be used to get the next least
significant bit, and so on. This implies the fs(x) method would have to be called n times.

The Quantum Solution

This problem can be solved with 100 percent confidence using a quantum computer after only

one call to the function f. (x). To identify the hidden bit string, the quantum Bernstein-Vazirani

algorithm is quite simple:

1- Set the input qubits to the |On state and the output qubit to the |On state.
2- To the input register, apply Hadamard gates.

3-Query the oracle

4- To the input register, apply Hadamard gates.

5-Measure

— HH HHF)
10) 4 f 1S)
_H_' '_H_J

=) D

Let's take a closer look at what happens when an H-gate is applied to each qubit to better
understand the process. If there is an n-qubit state, |a), and apply the H-gates, the transformation can

be saw :

—1)*%|z).
Ve IE%;I}“( )*%|z)
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When a quantum register |00...0> is chosen and n Hadamard gates are applied to it, the familiar

guantum superposition is obtained:

Hen 1
|00...0}—>

YD
VT L

Because a=0 in this situation, the phase term (-1)(ax) vanishes, and (-1)(ax)=1.

The traditional oracle fs returns 1 if the input x is such that s-x mod2=1, and 0 otherwise. The
following transformation is obtained if the same phase kickback trick from the Deutsch-Jozsa

algorithm is applied to a qubit in the state |-):

j2) 5 (~1)*7z

By querying the quantum oracle fs with the quantum superposition acquired from the
Hadamard transformation of |00...0), the procedure to expose the concealed bit string follows
naturally. Namely,

H® 1

fa 1
[00...0) — > lw = Y (=1)"|a)
V2© ooy V2" ooy

Since the inverse of the n Hadamard gates is also the n Hadamard gates itself, it can be obtain "a" by

. E : ( 1)GII| ) | )
r)—— |a
v 2" ze{0,1}"

C. Shor’s algorithm
Shor's algorithm is well-known for its ability to factor integers in polynomial time. The widely
used cryptosystem, RSA, relies on factoring being difficult for large enough integers since the best-

known classical algorithm requires superpolynomial time to factor the product of two primes.

For Shor's algorithm implementation, you'll need giskit and a few Python modules:
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import matplotlib.pyplot as plt

import numpy as np

from qiskit import QuantumCircuit, Aer, transpile, assemble
from qiskit.visualization import plot_histogram

from math import gcd

from numpy.random import randint

import pandas as pd

from fractions import Fraction

print("Imports Successful")

Period Finding

Periodic Function:

f(z) =a" mod N ‘

where "a" and "N" are both positive numbers, an is smaller than N, and they have no factors

in common. The period (r) is the smallest non-zero integer that:

a mod N=1 ‘

The graph below shows an example of this function:

Example of Periodic Function in Shor's Algorithm

30 ' : 5

25 A

20 1

15 A1

3* mod 35

10 1

Solution
Shor devised a method for estimating quantum phase on the unitary operator:
Uly) = |ay mod N)

If the state |1) is given, it can be observed that each subsequent application of U multiplies
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the state of our register by a(modN), and after r applications, the state of our register is returned to
the state |1). With a=3 and N=35, for example:

Ul1) = f3)
Uy = |9)
Uy = |27)

U o) = 12)
U = [1)

Effect of Successive Applications of U

X % %
01 x % %
X x |G X
5 251 P P
I it H H H
o D : ] H
@ 201 P : S H
P P : Pii
° ] Pox
£ 15 i I % :
@ P X - X : X
2 10l Pox ¥ x P F DX
w X I LiOX
5 : i R
; % i % i %
X r=12 e i X
He—————————— ¥ X
O_ T T T T T T T T
0 5 10 15 20 25 30 35

Number of applications of U

As a result, an eigenstate of U would be a superposition of the states in this cycle (Ju0):

[uy

lug) = L |a* mod N)
(e

-

ol
Il

The eigenvalue of this eigenstate is 1. Consider, for example, the case whenever the phase of

the kth state is proportional to k:

r—

1 omik
|lui) = % Ze_T |(..*.’c mod N)
" E=0

2

Ului) =e v |uw)

Because it contains r, this eigenvalue is especially noteworthy. In fact, the phase differences
between the r computational basis states must be equal, therefore r must be included. This isn't the
only eigenstate with this behavior; to broaden the scope, an integer, s, can be multiply to this phase

difference, which will show up in our eigenvalue:
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r=1  omisk
_ 1 T |k
|u5)fFZe |a® mod N)
k=0
2mwis
Ulug) =e r |u,)
For each integer value of s, there is a distinct eigenstate.

0<s<r—1. ‘

When all of these eigenstates are added together, the varied phases cancel out all of the

computational basis states save |1):

Because the computational basis state |1) is a superposition of these eigenstates, a phase is
observed when QPE is performed on U using the state |1):
S
b= —
T
Where s is a random integer ranging from 0 to r1. To find r, the continuing fractions algorithm

on ¢ is utilized. This is the circuit schematic (notice that it follows Qiskit's qubit ordering

convention):

|0} {: HEn QFT* :} %{-z"-}w R R )|

|
H

U21 Uzn—l

111
%
[T1]

1 e —
1) = o) o g e ey 20
) \.___;[lu_..l i S ] { 7

D. Grovers Algoritm
The problem's complexity In the classic situation, the answer is O(n). In the quantum scenario,
however, it will be the square root of n. As a result, desired elements in lengthy lists can be found

using quadratic speed simultaneous computation.
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In [3]: 1 my list=(1,3,5,2,4,9,5,8,0,7,6)

In [4): def the oracle(my_input):
winner=7
if my input is winner:
response = True
else:
response = False
return response

In [5]): 1 for index, trial number in enumerate(my_list):
if the_oracle(trial number) is True:
print( 'Winner found at index %i'$index)
print('%i calls to the Oracle used'$(index+1))
break

Winner found at index 9
10 calls to the Oracle used

By adding a negative phase to the solution states, grover's algorithm solves oracles.

U, |z) :{ lz) ifz#w

—lz) fz=w

The element in the diagonal matrix that corresponds to the marked item will have a negative phase.

1 0 00 0 0 0 0]

01 000 O OO

001 00 0 00O
Uu=00010000

00001 0 00O

00000 —1 0 0 «<w=101

00000 O 10

(0 000 0O 0 0 1]

Circuit structure of a Grover Oracle

A traditional function can be transformed into a reversible circuit of the following type:

r) f |2)
0y —S——  |f(=)

The phase kickback effect transforms the ‘output’ qubit into a Grover oracle (identical to the

Deutsch-Jozsa oracle) if it is initialized in the state |-):
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The auxiliary (]-)) qubit is then ignored.

Application of Quantum Circuits with Qiskit

We programmed a Raspberry-PI to act like a quantum computer and used a sense-hat module
to create quantum circuits showing superposition and quantum entanglement (GHZ and Bell States)
on real-life.

Raspberry PI runs Python 3.5, and Qiskit is a Python-based software so we did not face any
struggles on hardware. Also we wanted our program to work on IBM Quantum machines for further
access.

We imported and used sense-hat, giskit and numpy libraries for our cause.

A. Two Qubit Entanglement

For our Algorithm at first we valued the number of Qubits we are going to use which is 2.
Then from Qiskit we imported Quantum register, Classical Register, Quantum Circuit; we defined
them on our code and outlined our Quantum Circuit. On our circuit we applied Hadamard gate to first
qubit and CNOT gate to second qubit for achieving the entanglement.

Final stage was creating gDict dictionaries to both get the results of probability of quantum
states from our algorithm, drawing the circuit, and display the quantum dictionary as a bar graph on
the SenseHat 8x8 pixel display.

We achieved:

711" 486, 'ed’: 533}
f'@@’: 538, 'el': @, '18': @, "11': 486]

the results show that each states’ probability of occurence is close to %50.

Our circuit:
Results:
f"1ac S3I2, '@e': 492}
Out| =
o D - = : | X
— ]
g0 1= -4 T4 |-
— = L
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B. Two Qubit Superposition

Altering our Two Qubit Entanglement algorithm we could achieve Superposition. Mainly at
the skeleton of our Quantum circuit implementation. Instead of putting Hadamard gate on the first
qubit and applying CNOT gate to the second qubit to achieve Entanglement we applied Hadamard
gates to both qubits to achieve Superposition. The functions we had used and libraries were basically
the same except the deletion of CNOT gate and addition of the second Hadamard gate. But result of
probability of states drastically changed

We achieved:

{'11": 273, 'e1': 266, '@8': 239, '1@': 246}

{'@@": 239, '@1': 266, '18': 245, '11': 273}

the results show that each states’ probability of occurrence is close to %25.

Our circuit;

Results:
f£'11": 273, '81': Zed6, '@@’': 2359, 'la’": 2487}

Out[5]:
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C. Three Qubit Entanglement.

Our Code once changed again to increase the number of qubits and prior to gates we used to
achieve Two Qubit Entanglement we added an extra gate of CNOT. We put the Hadamard gate to
first qubit then to second and third we used CNOT gates to achieve entanglement on our quantum
circuit.

We achieved:

{'eed': 527, "111': 497}
{'ee@': 527, '@@1': 8, '916': @, '011': @, '188': @, '181': &, "118': @, '111': 497}

Increase in the number of qubits did not affect the states’ probability of occurrence to much,

and is also close to %50.

Results:
f'@ee': 527, "111°: 497}

Out[5]
gl 0: 4 H - M
- 1
gl 1: — 1 x - M
- 1
U_ _I_E - ii r
oD 3/ It
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D. Three Qubit Superposition
The difference of this stage from the Two Qubit Superposition one is that we have a 3 qubit
quantum circuit. Still having Hadamard gates on all of the Qubits to achieve superposition.
We achieve:

{'118': 128, "1@1": 132, '811': 144, "111': 132, '818": 134, '@@8': 141, '1e@': 109, '@81': 112}
{'@e8': 141, 'sal': 112, 'ele': 134, '11': 144, 'l@e’: 189, '181': 132, '118': 128, '111': 132}

Probability of Occurrence decreased to approximately 12,5.

Results:
{'11e': 120, "1el1': 132, 'ell': 144, '111': 132, '8l1e': 134, '@e88’': 141, '188': 109, '861": 112}

BERS AR
+
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E. Random Number Generation:

There are two types of RNGs: Pseudo-RNGs (PRNGs) and True RNGs (TRNGs). Even if
pseudo-RNG output is ‘random enough' for many uses, it is not genuinely and statistically random.

A True RNG, on the other hand, requires an actual piece of hardware to measure some random
process in the real world, as no computer program could ever be truly random. These gadgets range
from air noise measurement equipment to radioactive material connected through USB.

Therefore, the reason we used giskit to generate random numbers is that all randomness in the
cosmos is the outcome of quantum systems collapsing when they are measured. In a sense, this is

pure randomness, and it is the underlying source of unpredictability in any TRNG.

gRNG is a python-based open-source quantum random number generator. It accomplishes
this by communicating with any of IBM's publicly accessible quantum computers using the Qiskit
API.

5  1mport grng

gRNG connects to IBMQ and generate some numbers:

7  grng.set provider as IBMQ(' ')
8 grng.set backend()
9
10 random number = grng.get random int(e,255)

Then, using Sense Hat library, random generated number is shown in the rasqberry :

12 from sense hat import SenseHat

13

14 sense = SenseHat()

15 sense.rotation = 180

16 sense.low light = True

17 sense.show message("1 Byte Random")

18 sense.show message(str(random number))
19

3.2.3. Conceptualization

32



Algorithms that are made to prove that quantum computing has advantages over classical computing
are examined. Deutsch-Jozsa, Bernstein-Vazirani, Shor’s and Grover’s algorithms are chosen as they
are algorithms that are solved differently for classical and quantum computing.

Each of these algorithms are executed with Qiskit and are analysed for the difference in

runtimes and outcomes between classical and quantum computing.

3.2.4. Physical architecture

Our project has two physical attributes, Raspberry boards to be programmed, computers to

get through software development phase.

3.2.5. Materialization

We will out-buy the raspberry pi board so we can program it to be a small-scale quantum
computer with QISKIT software development kit afterwards we can run through our algorithms and

solve our problems.

3.2.6. Evaluation

After the configuration of Raspberry algorithms, quantum properties such as superposition
and entanglement will be shown. In addition, the chosen algorithms created for quantum computing
will be executed by Qiskit software, to show the structure of Qiskit programming and the relative
outcomes. Through these algorithms quantum properties are shown and proved.

These algorithms are chosen to implement the quantum properties and quantum computing to
see the behaviour of quantum system and analyse the outcome with comparison to classical

computing.
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4. INTEGRATION AND EVALUATION

Begin the first paragraph here.
Begin the second paragraph here.

4.1. Integration

4.2. Evaluation

Begin the first paragraph here.
Begin the second paragraph here.
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5. SUMMARY AND CONCLUSION

In summary, ...Begin the first summary paragraph here.

Begin the second paragraph here.

In conclusion, ...Begin the first conclusion paragraph here.

Begin the second paragraph here.
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APPENDIX A

Quantum Logic Gates [1].

1 ol

Not Gate = Pauili X

0

Pauili Y

L
vz

Hadamard

co o
coo o
oo o

— O O O

CNOT

1 0 0 0 0 0 0 O
01 0 00 0 OO
0 01 0 0 0 0O
0 001 0 0 0O

0 0001 0 O0O0

0 000 010 O0

0 0000 0 01

0 0 0 0 0 0 1 O

TOFFOLI = CCNOT

co o
oo o
co o

— O O O

SWAP

1 0 0 0 0 0 0 O

0100 0 O0 OO
0 01 0 0 0 O0 O
0 001 00 0O

0 000 1 0 0O

0 000 0 01O

0 000 01O0DO0
0 0 0 0 0 0 0 1

FREDKIN = CSWAP
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APPENDIX B

2 Qubit Entanglement Python Code

#!/usr/bin/env python

from sense_hat import SenseHat

from giskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit import execute

from giskit import Aer

from time import sleep

import numpy as np

numberOfQubits = 2
shots = 1024

gr = QuantumRegister(numberOfQubits)
cr = ClassicalRegister(numberOfQubits)

circuit = QuantumCircuit(gr, cr)

circuit.h(gr[0])
circuit.cx(qr[0], qr[1])

circuit.measure(qr[0], cr[0])

circuit.measure(qr[1], cr[1])

backend = Aer.get_backend('gasm_simulator)
job = execute(circuit, backend, shots=shots)
result = job.result()

print ("Results:")

Qdictres = result.get_counts(circuit)
print(Qdictres)

circuit.draw()

sense = SenseHat()

sense.rotation = 180
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sense.low_light = True

sense.show_message(*'2Q Entanglement™)

R=[255 0, 0]#Red
B=[0, O0,255]#Blue
W = [255, 255, 255] # White

# Create a default Qdict dictionary with all values 0

global Ist

Ist = [bin(x)[2:].rjust(numberOfQubits, '0") for x in range(2**numberOfQubits)]
values = [0]*pow(2,numberOfQubits)

Qdict = dict(zip(Ist,values))

# Update the dictionary with the actual dictionary values sent to the function.
Qdict.update(Qdictres)

# Scale by dividing by 1024 (shots) - For now assuming 1024, which is set by the sh parameter.
# Qdict.update({m: (1/sh) * Qdict[m] for m in Qdict.keys()})

print(Qdictres)
print(Qdict)

# Defining the display colors.
red = (255, 0, 0)

green = (0, 255, 0)

blue = (0, 0, 255)

sense.clear()
sense.rotation = 90
# Writing to the SenseHat display pixels.
for key in Qdict:
y=T7-int(key,2) # Cycle through the states
for x in range (0,8): # Cycle through the pixels
val = ((x+1)*128)-Qdict[key] # The difference between the state result and the pixel x

position
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if val<O:
#If the state result is greater than the pixel, set pixel color red.
color=red
else:
if val>0 and val<128:
#If the state result is within the pixel, set pixel color gradient.
fade = (255-(2*val),0,(2*val))
color=fade
else:
#1f the state result is less than the pixel, set pixel color blue.
color=blue
#Set pixel color.

sense.set_pixel(x, y, color)

sleep(5)

sense.clear()
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APPENDIX C

2 Qubit Superposition Python Code

#!/usr/bin/env python

from sense_hat import SenseHat

from giskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit import execute

from giskit import Aer

from time import sleep

import numpy as np

numberOfQubits = 2
shots = 1024

gr = QuantumRegister(numberOfQubits)
cr = ClassicalRegister(numberOfQubits)

circuit = QuantumCircuit(gr, cr)

circuit.h(gr[0])
circuit.h(qr[1])
circuit.measure(qr[0], cr[0])

circuit.measure(qr[1], cr[1])

backend = Aer.get_backend('gasm_simulator’)
job = execute(circuit, backend, shots=shots)
result = job.result()

print ("Results:™)

Qdictres = result.get_counts(circuit)
print(Qdictres)

circuit.draw()

sense = SenseHat()
sense.rotation = 180

sense.low_light = True
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sense.show_message(*"2Q Superposition™)

R=[255 0, O]#Red
B=[0, 0,255]#Blue
W = [255, 255, 255] # White

# Create a default Qdict dictionary with all values 0

global Ist

Ist = [bin(x)[2:].rjust(numberOfQubits, '0") for x in range(2**numberOfQubits)]
values = [0]*pow(2,numberOfQubits)

Qdict = dict(zip(Ist,values))

# Update the dictionary with the actual dictionary values sent to the function.
Qdict.update(Qdictres)

# Scale by dividing by 1024 (shots) - For now assuming 1024, which is set by the sh parameter.
# Qdict.update({m: (1/sh) * Qdict[m] for m in Qdict.keys()})

print(Qdictres)
print(Qdict)

# Defining the display colors.
red = (255, 0, 0)

green = (0, 255, 0)

blue = (0, 0, 255)

sense.clear()
sense.rotation = 90
# Writing to the SenseHat display pixels.
for key in Qdict:

y=7-int(key,2) # Cycle through the states

for x in range (0,8): # Cycle through the pixels

val = ((x+1)*128)-Qdict[key] # The difference between the state result and the pixel x

position

if val<O:
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#1f the state result is greater than the pixel, set pixel color red.
color=red
else:
if val>0 and val<128:
#If the state result is within the pixel, set pixel color gradient.
fade = (255-(2*val),0,(2*val))
color=fade
else:
#If the state result is less than the pixel, set pixel color blue.
color=blue
#Set pixel color.

sense.set_pixel(x, y, color)

sleep(5)

sense.clear()
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3 Qubit Entanglement Python Code

#!/usr/bin/env python

from sense_hat import SenseHat

from giskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit import execute

from qiskit import Aer

from time import sleep

import numpy as np

numberOfQubits = 3
shots = 1024

gr = QuantumRegister(numberOfQubits)
cr = ClassicalRegister(numberOfQubits)

circuit = QuantumCircuit(gr, cr)

circuit.h(gr[0])
circuit.cx(qr[0], gr[1])
circuit.cx(qr[1], qr[2])

circuit.measure(qr[0], cr[0])
circuit.measure(qr[1], cr[1])

circuit.measure(gr[2], cr[2])

backend = Aer.get_backend('gasm_simulator)
job = execute(circuit, backend, shots=shots)
result = job.result()

print ("Results:")

Qdictres = result.get_counts(circuit)
print(Qdictres)

circuit.draw()
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sense = SenseHat()
sense.rotation = 180
sense.low_light = True

sense.show_message(""3Q Entanglement™)

R=[255 0, 0]#Red
B=[0, O0,255]#Blue
W = [255, 255, 255] # White

# Create a default Qdict dictionary with all values 0

global Ist

Ist = [bin(x)[2:].rjust(numberOfQubits, '0") for x in range(2**numberOfQubits)]
values = [0]*pow(2,numberOfQubits)

Qdict = dict(zip(Ist,values))

# Update the dictionary with the actual dictionary values sent to the function.
Qdict.update(Qdictres)

# Scale by dividing by 1024 (shots) - For now assuming 1024, which is set by the sh parameter.
# Qdict.update({m: (1/sh) * Qdict[m] for m in Qdict.keys()})

print(Qdictres)
print(Qdict)

# Defining the display colors.
red = (255, 0, 0)

green = (0, 255, 0)

blue = (0, 0, 255)

sense.clear()
sense.rotation = 90
# Writing to the SenseHat display pixels.
for key in Qdict:
y=T7-int(key,2) # Cycle through the states
for x in range (0,8): # Cycle through the pixels
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val = ((x+1)*128)-Qdict[key] # The difference between the state result and the pixel x
position
if val<O:
#If the state result is greater than the pixel, set pixel color red.
color=red
else:
if val>0 and val<128:
#If the state result is within the pixel, set pixel color gradient.
fade = (255-(2*val),0,(2*val))
color=fade
else:
#1f the state result is less than the pixel, set pixel color blue.
color=blue
#Set pixel color.

sense.set_pixel(x, y, color)

sleep(5)

sense.clear()
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APPENDIX D

3 Qubit Superposition Python Code

#!/usr/bin/env python

from sense_hat import SenseHat

from giskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit import execute

from giskit import Aer

from time import sleep

import numpy as np

numberOfQubits = 3
shots = 1024

gr = QuantumRegister(numberOfQubits)
cr = ClassicalRegister(numberOfQubits)

circuit = QuantumCircuit(gr, cr)

circuit.h(gr[0])
circuit.h(qr[1])
circuit.h(gr[2])
circuit.measure(qr[0], cr[0])
circuit.measure(gr[1], cr[1])

circuit.measure(qr[2], cr[2])

backend = Aer.get_backend('gasm_simulator’)
job = execute(circuit, backend, shots=shots)
result = job.result()

print ("Results:™)

Qdictres = result.get_counts(circuit)
print(Qdictres)

circuit.draw()

sense = SenseHat()
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sense.rotation = 180
sense.low_light = True
sense.show_message(*"3Q Superposition™)

R=[255 0, O]#Red
B=[0, O0,255]#Blue
W = [255, 255, 255] # White

# Create a default Qdict dictionary with all values 0

global Ist

Ist = [bin(x)[2:].rjust(numberOfQubits, '0") for x in range(2**numberOfQubits)]
values = [0]*pow(2,numberOfQubits)

Qdict = dict(zip(Ist,values))

# Update the dictionary with the actual dictionary values sent to the function.
Qdict.update(Qdictres)

# Scale by dividing by 1024 (shots) - For now assuming 1024, which is set by the sh parameter.
# Qdict.update({m: (1/sh) * Qdict[m] for m in Qdict.keys()})

print(Qdictres)
print(Qdict)

# Defining the display colors.
red = (255, 0, 0)

green = (0, 255, 0)

blue = (0, 0, 255)

sense.clear()
sense.rotation = 90
# Writing to the SenseHat display pixels.
for key in Qdict:
y=7-int(key,2) # Cycle through the states
for x in range (0,8): # Cycle through the pixels
val = ((x+1)*128)-Qdict[key] # The difference between the state result and the pixel x
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position
if val<O:
#If the state result is greater than the pixel, set pixel color red.
color=red
else:
if val>0 and val<128:
#If the state result is within the pixel, set pixel color gradient.
fade = (255-(2*val),0,(2*val))
color=fade
else:
#If the state result is less than the pixel, set pixel color blue.
color=blue
#Set pixel color.

sense.set_pixel(x, y, color)

sleep(5)
sense.clear()
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APPENDIX E

1 Byte Random Number Generator Python Code

# Open Source qRNG link: https://github.com/ozaner/gRNG

import qrng

grng.set_provider_as_IBMQ(")
grng.set_backend()

random_number = grng.get_random_int(0,255)

from sense_hat import SenseHat

sense = SenseHat()

sense.rotation = 180

sense.low_light = True
sense.show_message(*'1 Byte Random™)

sense.show_message(str(random_number))
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