
T.C.

BAHÇEŞEHİR UNIVERSITY

FACULTY OF ENGINEERING AND NATURAL SCIENCES

CAPSTONE PROPOSAL FINAL REPORT

QUANTUM COMPUTING

Ege Akman – 1729970 (Computer Engineering)

Emir Tolga Demirel – 1730198 (Electrical & Electronics Engineering)

Iren Su Dulger – 1804907 (Electrical & Electronics Engineering)

Iren Su Dulger – 1804907 (Computer Engineering)

Kaan Kocaturk – 1728808 (Computer Engineering)

Esat Canberk Ozcelik – 1805100 (Electrical & Electronics Engineering)

Advisors:

Prof. Seref Kalem (Electrical & Electronics Engineering)

Assist. Prof. Ece Gelal Soyak (Computer Engineering)

ISTANBUL, May 2021

ii

STUDENT DECLARATION

By submitting this report, as partial fulfillment of the requirements of the Capstone course, the

students promise on penalty of failure of the course that

• they have given credit to and declared (by citation), any work that is not their own (e.g. parts

of the report that is copied/pasted from the Internet, design or construction performed by

another person, etc.);

• they have not received unpermitted aid for the project design, construction, report or

presentation;

• they have not falsely assigned credit for work to another student in the group, and not take

credit for work done by another student in the group.

iii

ABSTRACT

QUANTUM COMPUTING

Ege Akman – 1729970 (Computer Engineering)

Emir Tolga Demirel – 1730198 (Electrical & Electronics Engineering)

Iren Su Dulger – 1804907 (Electrical & Electronics Engineering)

Iren Su Dulger – 1804907 (Computer Engineering)

Kaan Kocaturk – 1728808 (Computer Engineering)

Esat Canberk Ozcelik – 1805100 (Electrical & Electronics Engineering)

Faculty of Engineering and Natural Sciences

Advisor:

Prof. Seref Kalem (Electrical & Electronics Engineering)

Assist. Prof. Ece Gelal Soyak (Computer Engineering)

May 2021

The major point of this project is to get a better understanding of quantum computing,

primarily superposition and entanglement. The process will start with connecting Raspberry Pi to

IBM’s Quantum Computer to simulate the behavior of qubits with Qiskit programming language. We

will show the superposition and entanglement principles with Qiskit, and proceed with more complex

simulations that also implement quantum computing such as random number generator and qubit

reduction with Variational Monte Carlo. The success of our project is determined by the management

of IBM connection and the correct implementation of Qubit codes.

Key Words: Quantum, Qubit, Qiskit, Raspberry Pi, IBM, Quantum Computing, Quantum

Mechanics, QRasp

iv

TABLE OF CONTENTS

ABSTRACT .. iii

TABLE OF CONTENTS .. iv

LIST OF TABLES .. vi

LIST OF FIGURES ... vi

LIST OF ABBREVIATIONS .. vii

1. OVERVIEW ... 1

1.1. Identification of the need .. 1

1.2. Definition of the problem ... 1

1.3. Conceptual solutions .. 2

1.4. Physical architecture... 5

2. WORK PLAN .. 10

2.1. Work Breakdown Structure (WBS) ... 10

2.2. Responsibility Matrix (RM) ... 10

2.3. Project Network (PN)R .. 11

2.4. Gantt char ... 12

2.5. Costs ... 13

2.6. Risk assessment .. 13

3. SUB-SYSTEMS ... 14

3.1. Electrical & Electronics Engineering ... 14

3.2. Computer Engineering ... 19

4. INTEGRATION AND EVALUATION .. 34

4.1. Integration .. 34

4.2. Evaluation ... 34

5. SUMMARY AND CONCLUSION ... 35

ACKNOWLEDGEMENTS ... 36

REFERENCES ... 37

APPENDIX A .. 38

APPENDIX B... 39

APPENDIX C... 42

APPENDIX C... 45

APPENDIX D .. 48

v

APPENDIX E ... 51

vi

LIST OF TABLES

Table 1. Comparison of the two conceptual solutions. .. 5

Table 2. Responsibility Matrix for the team ... 11

Table 3. Gantt chart for the materialisation phase of the project. 12

Table 4. Costs ... 13

Table 5. Risk assessment .. 13

LIST OF FIGURES

Figure 1. Representation of a Qubit as Bloch Sphere .. 3

Figure 2. Circuits for the quantum algorithm for Monte Carlo. [5] 5

Figure 3. The Quantum von Neumann architecture. [1] ... 6

Figure 4. A memory cell of a DRAM(a) and multiplexing quantum memory(b). [1] ... 7

Figure 5. Interface diagram for the system. .. 8

Figure 6. Process chart for the system. ... 9

Figure 7. Work breakdown structure for the project. ... 10

Figure 8. The project network. ... 11

Figure 9. Interface diagram for the system ... 15

Figure 10. Process chart for the system .. 16

Figure 11. 2 Qubit entanglement circuit. .. 17

Figure 12. 2 Qubit entanglement results... 17

Figure 13. 2 Qubit superposition circuit. .. 17

Figure 14. 2 Qubit superposition results... 17

Figure 15. 3 Qubit entanglement circuit. .. 18

Figure 16. 3 Qubit superposition circuit. .. 18

https://bahcesehir-my.sharepoint.com/personal/emirtolga_demirel_bahcesehir_edu_tr/Documents/Capstone/4992Status0207.docx#_Toc103341282

vii

LIST OF ABBREVIATIONS

IBM International Business Machines

Qubit Quantum Bit

IEEE The Institute of Electrical and Electronics Engineers

 1

1. OVERVIEW

This project is an implementation of various concepts to understand quantum computing. We

will be trying to build three concepts. The first one is creating superposition and entanglement using

two qubits. After that, we will measure the results. The expected outcome for this one of states from

00 or 11. When we understand the concept of quantum computing and finished the first part, we will

start to build more complex simulation which is quantum random number generation. If we

successfully finish the random number generation, we will try to implement Variational Monte Carlo

to reduce the number of qubits.

1.1. Identification of the need

In this project, we will try to implement the some algorithms and applications of the quantum

computing. To impelement algorithms and applications we need to understand the concept of

quantum computing. Quantum computing can be divided into two parts as theoretical and practical

implementation. Firstly, we need to understand the theoritical part of the algorithms and applications,

this includes complex mathematics and linear algebra. Second part which is the practical part is

implementation of the quantum circuits to compare the results with the theoretical part. In the bottom

of the circuits, they are unitary matrixes which is used to process on qubits. Due to fact that we can’t

build our own quantum computer we will use the raspberry pi to simulate. When raspberry pi

computational power is not enough, it is possible to use IBM’s quantum computer by applying

through IBM system.

1.2. Definition of the problem

Monte Carlo simulation gives a random choice for each activity which take place and repeats

this process to get a probability distribution. Monte Carlo method is used in optimization, numerical

integration in Engineering, Finance and many fields of physics and mathematics. The main constraint

of this method is that it requires huge amounts of computational power. Therefore, in classical

computing this method is not very efficient to implement. On the other hand, Quantum computers

can speed up this process but still there are some measures to be taken into consideration. The number

of needed qubits is proportional to the number of random numbers to get the dimension of the integral.

High dimensional integrations require high number of random numbers. Quantum computers of today

still lack the necessary qubit number. Obligators up to 106￼) may be needed for computation

problems for large portfolios in finance problems as an example whereas largest quantum computer

of today has only the qubit number of O(10). Therefore, number of qubits needs to be reduced to be

able to perform these processes.

 2

 1.2.1. Functional requirements

• Raspberry Pi must be functional. The connection between Raspberry Pi and IBM Quantum

Computer must be made.

• Qiskit libraries should be installed. Superposition and entanglement must be shown through

Qiskit code.

 1.2.2. Performance requirements

The experiments of superposition and entanglement must either be impracticable for standard

computers or must execute faster than standard computers.

The codes executed by Qiskit should run in a faster time and must have a higher accuracy rate

than that of standard computers if such a comparison can be made.

 1.2.3. Constraints

The main constraint is the Raspberry Pi’s computational power. Due to lack of Random Access

Memory (RAM), number of Qubits that can be used to simulate tasks is limited. Thus, design of the

solutions should be carefully designed with inefficacy of RAM in mind.

1.3. Conceptual solutions

We have three conceptual solutions for our topic respectively two qubit superposition and

entanglement, random number generation and implementing Variatianol Monte Carlo with random

number generation. We will use Raspberry Pi and SenseHAT 8x8 pixel LED to demonstrate our

results of the implementations.

First one is creating the superposition of two qubits and entanglement. Expected results is

50% probability of qubits state being 00 or 11. Since qubits are in superposition we cannot know

what is the output until their state is measured. We plan to see one of the states on 8x8 pixel LED.

 Our second conceptual solution is reducing the number of qubits by building a quantum random

number generator. To for implementation on Monte Carlo simulation for the reduction of qubits and

thus speeding the process. In order to over come this constraints we will first imply Monte Carlo

Simulation techniques and later by implementing pseudo-random number generator (PRNG)

estimated average integrand values in order to qunatum circuits for the decrement of the number of

qubits required

 1.3.1. Literature Review

The smallest unit of data storage in quantum computer is called Qubit as can be seen in Figure

1. Due to qubits are sensitive in nature the information stored in them is unstable [1]. Therefore,

 3

quantum computers such as IBM-Q are operating in very cold temperature and vacuumed place. A

qubit can exists in both states simultaneously except logical state 0 or 1. This existance called

superposition. During superposition, it is impossible to know qubit’s state until it is measured. In

other words, a qubit can exits in both states which is called superposition until it is measured. A

quntum computer can be considered as a network which combination of a quantum logic gates. Each

gate carry out an basic unitary operation on one or more than one qubits [4]. There are lots of gates

which be seen in Appendix A.

The simplest quantum logic gate is NOT gate which performs a operation on qubit to change

its states. It can be also extended to CNOT and CCNOT. These gates are named respectively

Controlled NOT gate and Controlled Controlled NOT gate. They perform the NOT operation on qubit

if control qubit is one. There is also important logic gate which is Hadamard gate that creates a

superposition. The Hadamard gate will be used in first conceptual solution for our topic [1] [4].

Figure 1. Representation of a Qubit as Bloch Sphere

Monte Carlo Methods

Monte Carlo protocols are a type of computational process that uses repeated random

sampling to produce numerical results. The basic idea is to employ randomness to solve problems

that are in principle deterministic. They're frequently utilized in physical and mathematical problems,

and they're especially valuable when other approaches are difficult or impossible to use. The three

main applications of Monte Carlo methods are optimization, numerical integration, and generating

 4

draws from a probability distribution.

Monte Carlo methods are effective for simulating systems with large numbers of associated

degrees of freedom, like disorganized elements and fluids, cellular structures and strongly linked

solids, in physics problems. Modeling phenomena via inputs with high ambiguity, such as the

computation of risk in business and multidimensional definite integrals evaluation with difficult

boundary conditions in mathematics, are two further examples. Monte Carlo–based predictions of

failure, cost overruns, and schedule overruns are typically better than human intuition or similar "soft"

methodologies when applied to systems engineering challenges.

Quantum computers are known to be faster than their conventional counterparts at Monte

Carlo simulation. There have already been various proposals for using the quantum algorithm to solve

real-world problems, such as quantitative finance. Because many problems in finance where Monte

Carlo simulation is applied, problem involves highly high-dimensional integrations, such as risk

measurement of credit portfolios, numerous random values are necessary to generate one sample

value of the integrand. As a result, in the naive approach, where a quantum register is allocated each

random number, the required qubit number is too huge. If a calculation comparable to the classical

one, estimating the mean of integrand values sampled by a pseudo-random-number generator (PRNG)

executed on a quantum circuit, qubits can be lowered while maintaining quantum speed up. It is

possible to offer not only an overview of the concept, but also a practical implementation of PRNG

and its application to credit risk measurement. In fact, lowering the number of qubits is a trade-off

against increasing circuit depth. As a result, while a complete decrease may be impractical, a trade-

off between speed and memory space will be critical in adjusting calculation settings based on

machine specs if a quantum computer is utilized to run large-scale Monte Carlo simulations in the

upcoming years.

 5

Figure 2. Circuits for the quantum algorithm for Monte Carlo. [5]

 1.3.2. Concepts

There are two possible concepts to implement our project. First one is Raspberry Pi and second

one is IBM’s Quantum Computer.

Raspberry Pi is a small single-board computer which is used for general purposes. We will

use it in our project to simulate some quantum computing concepts. However, due to fact that it is

still classical computer it has less computational power due to RAM (Random Access Memory) size.

It limits the number of qubit that can be used in quantum computing.

On the other hand, IBM Quantum Computer is much more powerfull due to fact that it is a

real quantum computer. It can compute more than 100 qubits with the latest developments.

Implementing complex quantum computing concepts will require to use IBM’s Quantum Computer.

Table 1. Comparison of the two conceptual solutions.

 Raspberry Pi IBM Quantum Computer

Cost high low

Complexity medium low

Performance medium high

Features high high

1.4. Physical architecture

Quantum von Neumann architecture:

A quantum bus system allows quantum information to be moved between the various

components of a quantum computer. The quantum arithmetic logic unit (QALU), which is the most

 6

hardware demanding portion of the quantum computer because quantum gate operations are

performed here, is where quantum information is manipulated. Quantum data is stored in a quantum

memory, which need to depend on multiplexing technology to provide huge storage capacity. In

addition, an input and output region serves as an interface to the classical world, where the qubit state

can be detected or started.

Figure 3. The Quantum von Neumann architecture. [1]

The quantum von Neumann architecture is based on the same concepts as the classical version.

A quantum von Neumann machine conducts a sequence of quantum gate operations by loading the

qubits to be manipulated into the QALU's quantum registers. The quantum register length can be as

long as you want it to be. To entangle the two qubits from arbitrary positions in the memory, they are

loaded from the quantum memory into the QALU, where gate operations are performed. After the

quantum gate operations, the qubits can either stay in the QALU for extra processing or be placed

back into the quantum memory. To detect quantum states, the appropriate quantum information can

be transmitted to an output, or detecting, region. It is possible to execute QIP in the QALU and

detection in the output region at the same time since this detection zone is independent from the

QALU.

After detecting the quantum state, the qubits can be relocated to an input region to be

initialized into a single state before being returned to the quantum memory (now initialized). If a more

complicated starting state is required, such as an entangled state, the initialized qubits can be placed

in the QALU, which performs quantum gate operations to generate the desired first/inital quantum

state.

Quantum Memory Region:

Field effect transistor (FET) and a capacitor, as shown in figure a, are the components of a

dynamic RAM (DRAM) needed to store one bit of information in a traditional computer. The FET

used to access the DRAM cell is controlled by digital multiplexing logic. Because of the minimal

hardware demand per bit, DRAM chips can store a lot of data.

 7

Figure 4. A memory cell of a DRAM(a) and multiplexing quantum memory(b). [1]

Quantum data storage capabilities of significant size must be realized in large-scale quantum

computers while the quantum memory hardware requirement is modest (classical). Rent's rule would

be violated if hardware demand expanded in lockstep with the number of qubits stored, and control

hardware would become too sophisticated and costly for large-scale quantum computers with

thousands or millions of qubits.

Multiplexing circuits, as shown in the figure b upside, can be used to reduce hardware

consumption. As a result, the capacity to store quantum data/information with a group of parameters

that remain constant is required.

To store an ion chain in a segmented Paul trap, for example, all that is required is a negative

DC voltage at the ion string's position and positive DC voltages surrounding it, forming an axial

confinement for the ion string. In theory, these few voltages may be utilized to store an infinite

number of ion strings. This collection of parameters (for trapped ions, a set of DC voltages) is applied

to all qubits in the quantum memory during storage. Multiplexing technology allows a shift of this

set of parameters to another set that can be adjusted independently in order to access a specific

memory cell. This set of parameters allows the quantum information of any memory cell to be moved

out of the memory cell out of the quantum memory.

The quantum bus system for quantum information transit, which must be conducted with high

fidelity to allow fault-tolerant operation, is one of the most important components of this quantum

von Neumann architecture.

Quantum information transport:

Because quantum information cannot be copied, it can only be conveyed via quantum

information. Moving qubits physically, quantum teleportation, and photon coupling are all possible.

In atomic or molecular qubit systems, quantum information can be transferred by physically moving

the qubit from one spatial point to another. For example, in segmented trapped ion systems, adjust

the confining axial DC potential to shift Paul traps, ions, or ion strings. In general, solid-state systems

are incapable of such mobility. Solid state technologies, such as spins in silicon, do, nevertheless,

allow for the movement of qubits.

An entangled qubit pair, each of which is at the destination, is required for quantum

 8

teleportation. The qubit at the destination, from which quantum information is extracted, is the first,

while the qubit at the source is the second. When a conditional quantum state is generated, it is also

necessary to perform a gate, which needs a qubit measurement across a classical channel to the

destination. Because quantum data must be stored and accessed in the quantum memory, each site

must have read-out and quantum-gate capabilities. This is in direct contradiction to DiVincenzo's

requirement for particular hardware for each criterion, which necessitates more hardware than

physical movement. However, in a number of solid-state systems, it could be an effective method.

Qubits to photons mapping has been demonstrated in atomic or molecule qubit systems, as

well as solid-state systems. As with quantum teleportation, this approach demands quantum logic at

each memory location and is hence hardware heavy. The capacity to transition from one qubit system

to another is one of the benefits of quantum information transit via quantum teleportation or photon

mapping over qubit mobility. QIP might be performed, for example, using superconducting circuit

QED systems, and nitrogen vacancy centers in diamond could be exploited for long-term quantum

memory storage.

Because quantum gate operations and quantum state readout are needed at each point in the

quantum memory, these technologies have a higher memory hardware requirement than systems that

enable qubit mobility. Quantum teleportation and photon mapping will be restricted to small and

medium-scale devices if this challenge cannot be overcome. Large-scale systems with low hardware

needs per stored qubit may be required to transfer the qubits in the quantum computer.

The SenseHAT 8x8 pixel LED which is drived by Raspberry Pi will be used to display results

of the computation. We will observe the output of the quantum circuit which will be used for random

number generation. The interface diagram can be seen in Figure 2.

Figure 5. Interface diagram for the system.

 9

When the device turned on it will check firstly is device successfully booted. If not booted, it

we will reboot the system until device is ready. When device ready to use, qiskit program that we

codded will be run. If program successfully run, device will send the results to 8x8 pixel LED to

display. If everything successfully done, program can be re-run or device can be turned off. Our

system will work as it has been shown in Figure 3.

Figure 6. Process chart for the system.

 10

2. WORK PLAN

2.1. Work Breakdown Structure (WBS)

The necessary works break down into two sub systems as hardware and software as in Figure

4. The main challenging part is the software development where we will be focusing on implementing

the study of random number generation in quantum computer.

Figure 7. Work breakdown structure for the project.

2.2. Responsibility Matrix (RM)

In this project, we have divided into two subsystems as Computer Engineering and Electrical

and Electronics Engineering. Both departments have people will be responsible from writing report

and management. The responsibility matrix can be investigated in Table 2.

Electrical and Electronics Engineers will be responsible from the studying Quantum

Information Processing for designing quantum circuit.

Computer Engineers will be responsible from configuration of Raspberry Pi for quantum

simulation and implementing the code for the quantum circuit. Furthermore, computer engineers will

be implementing Quantum Information Processing study which is done by Electrical and Electronics

Engineers.

 11

Table 2. Responsibility Matrix for the team

Electrical & Electronics

Engineering Computer Engineering

Task Iren Canberk Tolga Ege Iren Kaan

Management R S R S

Reporting S S R R S S

Configuration of Rapsberry Pi R S S

Quantum Information Processing R R S

Quantum circuit design S R R

Impelementing the Qiskit Code S R R

Implementing Random Number Generation S S R

2.3. Project Network (PN)R

Figure 8. The project network.

 12

2.4. Gantt char

T
a
b

le
 3

. G
a
n

tt c
h

a
r
t fo

r
 th

e
 m

a
te

r
ia

lisa
tio

n
 p

h
a
se

 o
f th

e
 p

ro
je

c
t.

 13

2.5. Costs

Cost of the Raspberry Pi and pixel LED is affected with exchange rates. So, prices could be

different when placing order.

Table 4. Costs

Cost

SenseHAT 8x8 Pixel Led 450,00

Total 450,00

2.6. Risk assessment

There are several risks which cannot be neglected. It is difficult to measure how much time we

need to complete our quantum circuit construction and implementing it in qiskit, since the python

code heavily rely on constructed circuit. Furthermore, this, also, leads to failure of integration of

subsystem which is again important to test project.

Since this project will be implemented on Raspberry Pi, it is difficult the RAM will be enough

for computational power. If it is not enough, we will use IBM-Q which is a real quantum computer

built by IBM. If we cannot connect to the IBM-Q only choice is the use our personal computer which

RAM can be increase if needed.

Table 5. Risk assessment

Failure Event Probability Severity Risk Level Plan of Action

Covid-19 Lockdown Possible Minor Low Online systems will be used

Failure of Integration of
Subsystems

Possible Major High Consultancy will be received from professionals
in the field

Raspberry Pi and 8x8 Led
malfunction

Possible Minor Low Connecting to IBM-Q remotely

Bugs Likely Moderate High Solving bugs

Unable to connect IBM-Q
remotely

Possible Minor Low Using personal computers for simulation

Failure of construction of
quantum circuit

Possible Major High Consultancy will be received from professionals
in the field

 14

3. SUB-SYSTEMS

3.1. Electrical & Electronics Engineering

 3.1.1. Requirements

Since Electrical & Electronics Engineering will be responsible from the Raspberry Pi

configuration and will be developing quantum computing solutions with Computer Engineering sub-

system. Necessary information related to Raspberry Pi and Qiskit should be know by sub-system. To

build solutions using Qiskit every sub-system member should be aware of the algorithms of quantum

computing and the Qiskit quantum gates.

 3.1.2. Technologies and methods

Raspberry Pi is a name for series of single-board computers developed by Raspberry Pi

Foundation. Raspberry Pi is a very cheap computer that runs Linux operating system while providing

a set of GPIO (General Purpose Input/Output) pins. It has many use of areas from basic learn purpose

to implementing complex IoT solutions.

The quantum computer is composition of quantum logic gates. There are many gates which

performing an elementary unitary operation on qubits. The qubit is the basis unit of a information like

bit in the classical computer. This qubit’s behaviour differs from classical bits while representing a 1

bit information. Unlikely to classical bits qubit also able to exists in superposition. The superposition

is a state that qubit can be exists as a 0 and 1 at the same time [3] [7].

In quantum computing states are represented with vector called statevectors. The simple

quantum logic gates’ statevectors shown in Appendix A. The NOT gate is the simplest gate which

changes the state of the qubit. If state of the qubit is 0, it is changed to 1 and vice versa. There are

two more NOT gates,which they have control qubit(s), such as CNOT and CCNOT. The operation

of changing state of the qubit is controlled by another qubit or qubits. If control qubit’s state is 1 the

target qubit’s state is changed, if control qubit is not in state 0 target qubit’s state stays still. One of

the important quantum logic gates is Hadamard gate which is used to create superposition [1] [4].

 3.1.3. Conceptualization

Raspberry Pi is a small computer that runs on Linux and is used in areas such as robotics. IBM

Quantum Composer and Lab is a hardware, made by quantum circuits and runs on multiple machines,

that can be remotely accessed via IBM Cloud, or via state-of-the-art software. Connection to IBM

Quantum computer with Raspberry is generally named like RasQberry or Qrasp.

For connection, a raspberry and a Sense HAT LED display is used. The process starts with

setting up Raspberry Pi, Python environment, instillation of necessary dependencies, Qiskit and so

 15

on. After the setup of Jupyter Notebook for Qiskit on Raspberry Pi, commands for IBM Quantum

providers and backends are executed. After this, Qiskit files are available for execution. With

installation and enabling of Sense HAT the set up and configurations are done. Most of this process

is open-source and if any problems arise, they will be solved depending on the error such as running

different commands on shell, upgrading of Raspberry Pi system, using Sense HAT emulator.

 3.1.4. Physical architecture

We will be using Raspberry Pi 4 and 8x8 pixel LED to obsver outcomes of the implementation

of conceptual solutions. Corresponding diagram for the system can be seen in Fingure 7.

Figure 9. Interface diagram for the system

When Figure 8 is investigated, it is seen that when device turned on system will be checked

the device ready to operate if not it will try to reboot device. When device is ready, Qiskit program

corresponding to our project will be run and it will be check whether the program successfully run or

not. If it is run successfully, we will display the result on 8x8 LED, if it is not displayed program will

run again. When all program successfully worked, it is up to user to run program again to see different

outputs or turn off the device.

 16

Figure 10. Process chart for the system

 3.1.5. Materialization

Since our project rely on construction and implementing quantum circuit and software. We

will only use Raspberry Pi 4 and 8x8 pixel LED as materials. The 8x8 pixel LED will be connected

to Raspberry Pi 4 and will be drived by Raspberry Pi. As Electrical and Electronics Engineers, we

firstly set up the raspberry pi later we combined the SenseHat with Raspberry Pi. Since our part

finished, we started to help Computer Engineers while they are programming. In order to achieve our

goals we proceed step by step from fundamentals to complex implementation.

Superposition is where the quantum states of a physical system is added together, giving an

unknown system of probability until it is observed. It is demonstrated by Schrödinger’s Wave

Equations and explained by the renowned Schrödinger’s Cat.

In a quantumly entangled group of particles measurements of momentum, spin and

polarization are correlated. No matter the distance, they can show the perfectly correlated values of

these measurements, if this is the case information shall travel instantaneously but according to

relativistic theory this is a violation of the physical laws of the universe, therefore Albert Einstein

famously called this phenomenon “Spooky action at a distance” and ridiculed the theory saying that

the formulations must have been incomplete. Nevertheless, this phenomenon today constitutes one

 17

of the main pillars of quantum computing and its implementation.

Firstly, 2 qubit entanglement and superposition circuits are implemented on jupyter notebook

and observed the results programmatically. The first implementation of the project was 2 qubit

entanglement. To achieve the entanglement, we applied respectively Hadamard Gate to first qubit

and CNOT Gate to second qubit. After that we measured the qubits. The circuit drawing by of the

entanglement in qiskit can be seen in figure 11.

Figure 11. 2 Qubit entanglement circuit.

It is observed that the results were close to %50 probability of occurance of one state. The

results can be seen in figure 12. These results are subject to change when running the simulation.

Figure 12. 2 Qubit entanglement results.

Later, we constructed the superposition circuit by using quantum gates on jupyter notebook

as shown in figure 13. In order to construct the circuit, we applied Hadamard Gate to both qubits.

Figure 13. 2 Qubit superposition circuit.

Compared to entanglement, the results show that each states’ probability close to %25 as can

be seen in figure 14.

Figure 14. 2 Qubit superposition results.

Furthermore, when we finished the 2 qubit superposition and entanglement we further

 18

constructed the 3 qubit versions of both of them. Since increase in qubit number doesn’t affect the

probability of entanglement, main difference was in superposition. Each states’ probability changes

to %12.5 from %25 since the state number doubled compared to 2 qubit.

In order to construct the circuit for 3 qubit entanglement one more CNOT Gate added. Which

is affecting the third qubit’s state when second qubit’s state changed. This circuit let us observe the

probability of occurrence of 000 or 111 states. Below, the circuit for 3 qubit entanglement is shown

in figure 15.

Figure 15. 3 Qubit entanglement circuit.

Since the probability of occurrence is %50 theoretically any of the states from 000 or 111.

Results are close to the each other. Later we constructed the circuit for 3 qubit superposition which

is let the probability of occurrence change from %25 to %12.5 due to state number is doubled. In

order to construct circuit we applied Hadamard Gate to the third qubit. The circuit can be observed

in figure 16.

Figure 16. 3 Qubit superposition circuit.

Finally, Computer Engineer programmed algorithm to show the results on SenseHAT.

(Algoritma anlatılacak ama tam değil genel hatlarıyla bilgi verilmesi gerek)

 3.1.6. Evaluation

At the first step of test, we will run example codes to see if our integration of system working

 19

properly. When we see that system works under preferred conditions, we will start to implement our

project step by step. Each step will be tested when the step is done. Expected outcomes of the project

for each conceptual solution is differs. For two qubit superposition and entanglement simulations

expected outcome is 00 or 11 with probability of 50%. If the result is one of the states that can be 00

or 11, program is working as intended.

3.2. Computer Engineering

 3.2.1. Requirements

Computer Engineering will handle the programming and software development relying on

quantum mechanics and states with correlation in Electrics & Electronical Engineering department.

This phases will be demonstrated on Raspberry Pi boards and these boards will be programmed using

QISKIT software development kit and Python programming language.

 3.2.2. Technologies and methods

QISKIT is a free, open-source software development kit for dealing with quantum computers

at the circuit, pulse, and algorithm level. It includes tools for writing and altering quantum programs,

as well as running them on IBM Quantum Experience prototype quantum devices or local computer

simulators.

Python is a dynamically semantic, interpreted, object-oriented high-level programming

language. Its high-level built-in data structures, together with dynamic typing and dynamic binding,

making it ideal for Rapid Application Development and as a scripting or glue language for connecting

existing components.

Machine learning is a branch of artificial intelligence (AI) and computer science which

focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving

its accuracy. Machine learning starts with data The data is gathered and prepared to be used as training

data, or the information the machine learning model will be trained on. The more data, the better the

program.

 20

Quantum Machine Learning is constructed on two concepts : hybrid quantum-classical models

and quantum data. Quantum data is any data source that occurs in a natural or artificial quantum

system. This can be data generated by a quantum computer.

Algoritmhs

A. Deutsch-Jozsa Algorithm

Deutsch-Jozsa Problem

A concealed Boolean function f is supplied to us, which takes a sequence as input and returns either

0 or 1, as follows:

The given Boolean function has the feature of being guaranteed to be either balanced or constant. For

any input, a constant method returns all 0s or all 1, whereas a balanced program runs 0s for half of

all entries and 1s with the other half.

The Classical Solution

In the best case scenario, two queries to the oracle can identify whether the concealed Boolean

equation, f(x), is balanced: for example, if there are both f(0,0,0,...)→0 and f(1,0,0,...)→1, it is known

that the function is balanced because there are two different outputs.

In the worst-case scenario, if the same result for each input is gotten, exactly half of all

potential inputs plus one have to be tested to be sure that f(x) is constant. 2(n1)+1 trial inputs are

required to be positive that f(x) is constant in the worst scenario, because the set of all possible inputs

is 2n. If 8 of the 16 possible options are checked for a 4-bit string and obtain all 0s, it is still feasible

that the 9th input yields a 1 and f(x) is balanced. This is a very extremely rare event in terms of

probability.

In reality, if we were above x percent certain, we could truncate our classical algorithm early.

However, if we want to be absolutely certain, we'll need to verify 2(n1)+1 inputs.

The Quantum Solution

This problem can be solved with 100 percent certainty using a quantum computer after only

one call to the function f(x), as long as the function f is implemented as a quantum oracle that transfers

the state |x⟩|y⟩ to |x⟩|y⊕f(x)⟩, where is addition modulo 2. The Deutsch-Jozsa algorithm's generic

circuit is shown below.

 21

B. The Bernstein-Vazirani Algorithm

 The Bernstein-Vazirani Problem

It is given another black-box function, f, which accepts a string of bits (x) as input and returns either

0 or 1, as follows:

Rather than being balanced or constant, as in the Deutsch-Jozsa issue, the function must now

return the bitwise product of the input with some string, s. To put it another way, given an input x,

f(x)=sx (mod 2). It is expected that s will be discovered. The Bernstein-Vazirani oracle looks like this

as a standard reversible circuit:

 The Classical Solution

Classically, the oracle returns:

 Given an x as an input. By querying the oracle with the following sequence of inputs, the concealed

bit string s can be revealed:

 22

 Where each query yields a distinct piece of data (the bit si). For example, x = 1000...0 can be

used to determine the least relevant bit of s, and x = 0100...0 can be used to get the next least

significant bit, and so on. This implies the fs(x) method would have to be called n times.

The Quantum Solution

 This problem can be solved with 100 percent confidence using a quantum computer after only

one call to the function f. (x). To identify the hidden bit string, the quantum Bernstein-Vazirani

algorithm is quite simple:

1- Set the input qubits to the |0n state and the output qubit to the |0n state.

2- To the input register, apply Hadamard gates.

3-Query the oracle

4- To the input register, apply Hadamard gates.

5-Measure

 Let's take a closer look at what happens when an H-gate is applied to each qubit to better

understand the process. If there is an n-qubit state, |a⟩, and apply the H-gates, the transformation can

be saw :

 23

 When a quantum register |00...0> is chosen and n Hadamard gates are applied to it, the familiar

quantum superposition is obtained:

 Because a=0 in this situation, the phase term (-1)(ax) vanishes, and (-1)(ax)=1.

The traditional oracle fs returns 1 if the input x is such that s⋅x mod2=1, and 0 otherwise. The

following transformation is obtained if the same phase kickback trick from the Deutsch-Jozsa

algorithm is applied to a qubit in the state |−⟩:

By querying the quantum oracle fs with the quantum superposition acquired from the

Hadamard transformation of |00...0⟩, the procedure to expose the concealed bit string follows

naturally. Namely,

Since the inverse of the n Hadamard gates is also the n Hadamard gates itself, it can be obtain "a" by

C. Shor’s algorithm

Shor's algorithm is well-known for its ability to factor integers in polynomial time. The widely

used cryptosystem, RSA, relies on factoring being difficult for large enough integers since the best-

known classical algorithm requires superpolynomial time to factor the product of two primes.

For Shor's algorithm implementation, you'll need qiskit and a few Python modules:

 24

Period Finding

Periodic Function:

where "a" and "N" are both positive numbers, an is smaller than N, and they have no factors

in common. The period (r) is the smallest non-zero integer that:

The graph below shows an example of this function:

Solution

 Shor devised a method for estimating quantum phase on the unitary operator:

If the state |1⟩ is given, it can be observed that each subsequent application of U multiplies

 25

the state of our register by a(modN), and after r applications, the state of our register is returned to

the state |1⟩. With a=3 and N=35, for example:

As a result, an eigenstate of U would be a superposition of the states in this cycle (|u0):

The eigenvalue of this eigenstate is 1. Consider, for example, the case whenever the phase of

the kth state is proportional to k:

 Because it contains r, this eigenvalue is especially noteworthy. In fact, the phase differences

between the r computational basis states must be equal, therefore r must be included. This isn't the

only eigenstate with this behavior; to broaden the scope, an integer, s, can be multiply to this phase

difference, which will show up in our eigenvalue:

 26

For each integer value of s, there is a distinct eigenstate.

When all of these eigenstates are added together, the varied phases cancel out all of the

computational basis states save |1⟩:

Because the computational basis state |1⟩ is a superposition of these eigenstates, a phase is

observed when QPE is performed on U using the state |1⟩:

Where s is a random integer ranging from 0 to r1. To find r, the continuing fractions algorithm

on ϕ is utilized. This is the circuit schematic (notice that it follows Qiskit's qubit ordering

convention):

D. Grovers Algoritm

The problem's complexity In the classic situation, the answer is O(n). In the quantum scenario,

however, it will be the square root of n. As a result, desired elements in lengthy lists can be found

using quadratic speed simultaneous computation.

 27

By adding a negative phase to the solution states, grover's algorithm solves oracles.

The element in the diagonal matrix that corresponds to the marked item will have a negative phase.

Circuit structure of a Grover Oracle

A traditional function can be transformed into a reversible circuit of the following type:

The phase kickback effect transforms the 'output' qubit into a Grover oracle (identical to the

Deutsch-Jozsa oracle) if it is initialized in the state |−⟩:

 28

The auxiliary (|−⟩) qubit is then ignored.

Application of Quantum Circuits with Qiskit

 We programmed a Raspberry-PI to act like a quantum computer and used a sense-hat module

to create quantum circuits showing superposition and quantum entanglement (GHZ and Bell States)

on real-life.

 Raspberry PI runs Python 3.5, and Qiskit is a Python-based software so we did not face any

struggles on hardware. Also we wanted our program to work on IBM Quantum machines for further

access.

 We imported and used sense-hat, qiskit and numpy libraries for our cause.

A. Two Qubit Entanglement

For our Algorithm at first we valued the number of Qubits we are going to use which is 2.

Then from Qiskit we imported Quantum register, Classical Register, Quantum Circuit; we defined

them on our code and outlined our Quantum Circuit. On our circuit we applied Hadamard gate to first

qubit and CNOT gate to second qubit for achieving the entanglement.

Final stage was creating qDict dictionaries to both get the results of probability of quantum

states from our algorithm, drawing the circuit, and display the quantum dictionary as a bar graph on

the SenseHat 8x8 pixel display.

We achieved:

the results show that each states’ probability of occurence is close to %50.

Our circuit:

 29

B. Two Qubit Superposition

Altering our Two Qubit Entanglement algorithm we could achieve Superposition. Mainly at

the skeleton of our Quantum circuit implementation. Instead of putting Hadamard gate on the first

qubit and applying CNOT gate to the second qubit to achieve Entanglement we applied Hadamard

gates to both qubits to achieve Superposition. The functions we had used and libraries were basically

the same except the deletion of CNOT gate and addition of the second Hadamard gate. But result of

probability of states drastically changed

We achieved:

the results show that each states’ probability of occurrence is close to %25.

Our circuit:

 30

C. Three Qubit Entanglement.

Our Code once changed again to increase the number of qubits and prior to gates we used to

achieve Two Qubit Entanglement we added an extra gate of CNOT. We put the Hadamard gate to

first qubit then to second and third we used CNOT gates to achieve entanglement on our quantum

circuit.

We achieved:

Increase in the number of qubits did not affect the states’ probability of occurrence to much,

and is also close to %50.

 31

D. Three Qubit Superposition

The difference of this stage from the Two Qubit Superposition one is that we have a 3 qubit

quantum circuit. Still having Hadamard gates on all of the Qubits to achieve superposition.

We achieve:

Probability of Occurrence decreased to approximately 12,5.

 32

E. Random Number Generation:

There are two types of RNGs: Pseudo-RNGs (PRNGs) and True RNGs (TRNGs). Even if

pseudo-RNG output is 'random enough' for many uses, it is not genuinely and statistically random.

A True RNG, on the other hand, requires an actual piece of hardware to measure some random

process in the real world, as no computer program could ever be truly random. These gadgets range

from air noise measurement equipment to radioactive material connected through USB.

Therefore, the reason we used qiskit to generate random numbers is that all randomness in the

cosmos is the outcome of quantum systems collapsing when they are measured. In a sense, this is

pure randomness, and it is the underlying source of unpredictability in any TRNG.

qRNG is a python-based open-source quantum random number generator. It accomplishes

this by communicating with any of IBM's publicly accessible quantum computers using the Qiskit

API.

qRNG connects to IBMQ and generate some numbers:

Then, using Sense Hat library, random generated number is shown in the rasqberry :

 3.2.3. Conceptualization

 33

Algorithms that are made to prove that quantum computing has advantages over classical computing

are examined. Deutsch-Jozsa, Bernstein-Vazirani, Shor’s and Grover’s algorithms are chosen as they

are algorithms that are solved differently for classical and quantum computing.

Each of these algorithms are executed with Qiskit and are analysed for the difference in

runtimes and outcomes between classical and quantum computing.

 3.2.4. Physical architecture

Our project has two physical attributes, Raspberry boards to be programmed, computers to

get through software development phase.

 3.2.5. Materialization

We will out-buy the raspberry pi board so we can program it to be a small-scale quantum

computer with QISKIT software development kit afterwards we can run through our algorithms and

solve our problems.

 3.2.6. Evaluation

After the configuration of Raspberry algorithms, quantum properties such as superposition

and entanglement will be shown. In addition, the chosen algorithms created for quantum computing

will be executed by Qiskit software, to show the structure of Qiskit programming and the relative

outcomes. Through these algorithms quantum properties are shown and proved.

These algorithms are chosen to implement the quantum properties and quantum computing to

see the behaviour of quantum system and analyse the outcome with comparison to classical

computing.

 34

4. INTEGRATION AND EVALUATION

Begin the first paragraph here.

Begin the second paragraph here.

4.1. Integration

4.2. Evaluation

Begin the first paragraph here.

Begin the second paragraph here.

 35

5. SUMMARY AND CONCLUSION

In summary, ...Begin the first summary paragraph here.

Begin the second paragraph here.

In conclusion, ...Begin the first conclusion paragraph here.

Begin the second paragraph here.

 36

ACKNOWLEDGEMENTS

We wish to thank our advisers Prof. Seref KALEM and Assist. Prof Ece Gelal SOYAK for

giving all their supports and sharing their experiences with us to develop our project during

researching.

This work was partly funded by Bahçeşehir University.

 37

REFERENCES

[1] M. Kiili, «Quantum Computing,» HAAGA-HELIA University of Applied

Sciences, 2014.

[2] M. F. Brandl, «A Quantum von Neumann Architecture for Large-Scale Quantum

Computing,» Cornell University, 2017.

[3] J. West, «The Quantum Computer,» XOOTIC, cilt 10, no. 3, 2003.

[4] R. Garipelly, P. M. Kiran ve A. S. Kumar, «A Review on Reversible Logic Gates

and their Implementation,» International Journal of Emerging Technology and

Advanced Engineering, cilt 3, no. 3, 2013.

[5] K. Miyamoto ve K. Shiohara, «Reduction of Qubits in Quantum Algorithm for

Mone Carlo Simulation by Pseuda-random Number Generator,» APS Physics, no. 102,

2020.

[6] X. Ma, X. Yuan, Z. Cao, B. Qİ ve Z. Zhang, «Quantum Random Number

Generation,» Nature Partner Journals, cilt 2, pp. 1-9, 2016.

[7] T. Hey, «Quantum Computing: An Introduction,» Computing & Control

Engineering Journal, cilt 10, no. 3, pp. 105-112, 1999.

[8] A. Montanaro, «Quantum Speedup of Monte Carlo Methods,» Royal Society, cilt

471, no. 2181, 2015.

[9] J. Preskill, «Quantum Computing: Pro and Con,» Royal Society, cilt 454, no.

1969, 1998.

[10] K. Tamura ve Y. Shikano, «Quantum Random Number Generation with the

Superconducting Quantum Computer IBM 20Q Tokyo,» TUCS Lecture Notes, 2020.

 38

APPENDIX A

Quantum Logic Gates [1].

Not Gate = Pauili X = [
0 1
1 0

]

Pauili Y = [
0 −𝑖
𝑖 0

]

Pauili Z = [
1 0
0 −1

]

Hadamard =
1

√2
[
1 1
1 −1

]

CNOT = [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]

TOFFOLI = CCNOT =

[

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0]

SWAP = [

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

]

FREDKIN = CSWAP =

[

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1]

 39

APPENDIX B

2 Qubit Entanglement Python Code

#!/usr/bin/env python

from sense_hat import SenseHat

from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister

from qiskit import execute

from qiskit import Aer

from time import sleep

import numpy as np

numberOfQubits = 2

shots = 1024

qr = QuantumRegister(numberOfQubits)

cr = ClassicalRegister(numberOfQubits)

circuit = QuantumCircuit(qr, cr)

circuit.h(qr[0])

circuit.cx(qr[0], qr[1])

circuit.measure(qr[0], cr[0])

circuit.measure(qr[1], cr[1])

backend = Aer.get_backend('qasm_simulator')

job = execute(circuit, backend, shots=shots)

result = job.result()

print ("Results:")

Qdictres = result.get_counts(circuit)

print(Qdictres)

circuit.draw()

sense = SenseHat()

sense.rotation = 180

 40

sense.low_light = True

sense.show_message("2Q Entanglement")

R = [255, 0, 0] # Red

B = [0, 0, 255] # Blue

W = [255, 255, 255] # White

Create a default Qdict dictionary with all values 0

global lst

lst = [bin(x)[2:].rjust(numberOfQubits, '0') for x in range(2**numberOfQubits)]

values = [0]*pow(2,numberOfQubits)

Qdict = dict(zip(lst,values))

Update the dictionary with the actual dictionary values sent to the function.

Qdict.update(Qdictres)

Scale by dividing by 1024 (shots) - For now assuming 1024, which is set by the sh parameter.

Qdict.update({m: (1/sh) * Qdict[m] for m in Qdict.keys()})

print(Qdictres)

print(Qdict)

Defining the display colors.

red = (255, 0, 0)

green = (0, 255, 0)

blue = (0, 0, 255)

sense.clear()

sense.rotation = 90

Writing to the SenseHat display pixels.

for key in Qdict:

 y=7-int(key,2) # Cycle through the states

 for x in range (0,8): # Cycle through the pixels

 val = ((x+1)*128)-Qdict[key] # The difference between the state result and the pixel x

position

 41

 if val<0:

 #If the state result is greater than the pixel, set pixel color red.

 color=red

 else:

 if val>0 and val<128:

 #If the state result is within the pixel, set pixel color gradient.

 fade = (255-(2*val),0,(2*val))

 color=fade

 else:

 #If the state result is less than the pixel, set pixel color blue.

 color=blue

 #Set pixel color.

 sense.set_pixel(x, y, color)

sleep(5)

sense.clear()

 42

APPENDIX C

2 Qubit Superposition Python Code

#!/usr/bin/env python

from sense_hat import SenseHat

from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister

from qiskit import execute

from qiskit import Aer

from time import sleep

import numpy as np

numberOfQubits = 2

shots = 1024

qr = QuantumRegister(numberOfQubits)

cr = ClassicalRegister(numberOfQubits)

circuit = QuantumCircuit(qr, cr)

circuit.h(qr[0])

circuit.h(qr[1])

circuit.measure(qr[0], cr[0])

circuit.measure(qr[1], cr[1])

backend = Aer.get_backend('qasm_simulator')

job = execute(circuit, backend, shots=shots)

result = job.result()

print ("Results:")

Qdictres = result.get_counts(circuit)

print(Qdictres)

circuit.draw()

sense = SenseHat()

sense.rotation = 180

sense.low_light = True

 43

sense.show_message("2Q Superposition")

R = [255, 0, 0] # Red

B = [0, 0, 255] # Blue

W = [255, 255, 255] # White

Create a default Qdict dictionary with all values 0

global lst

lst = [bin(x)[2:].rjust(numberOfQubits, '0') for x in range(2**numberOfQubits)]

values = [0]*pow(2,numberOfQubits)

Qdict = dict(zip(lst,values))

Update the dictionary with the actual dictionary values sent to the function.

Qdict.update(Qdictres)

Scale by dividing by 1024 (shots) - For now assuming 1024, which is set by the sh parameter.

Qdict.update({m: (1/sh) * Qdict[m] for m in Qdict.keys()})

print(Qdictres)

print(Qdict)

Defining the display colors.

red = (255, 0, 0)

green = (0, 255, 0)

blue = (0, 0, 255)

sense.clear()

sense.rotation = 90

Writing to the SenseHat display pixels.

for key in Qdict:

 y=7-int(key,2) # Cycle through the states

 for x in range (0,8): # Cycle through the pixels

 val = ((x+1)*128)-Qdict[key] # The difference between the state result and the pixel x

position

 if val<0:

 44

 #If the state result is greater than the pixel, set pixel color red.

 color=red

 else:

 if val>0 and val<128:

 #If the state result is within the pixel, set pixel color gradient.

 fade = (255-(2*val),0,(2*val))

 color=fade

 else:

 #If the state result is less than the pixel, set pixel color blue.

 color=blue

 #Set pixel color.

 sense.set_pixel(x, y, color)

sleep(5)

sense.clear()

 45

APPENDIX C

3 Qubit Entanglement Python Code

#!/usr/bin/env python

from sense_hat import SenseHat

from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister

from qiskit import execute

from qiskit import Aer

from time import sleep

import numpy as np

numberOfQubits = 3

shots = 1024

qr = QuantumRegister(numberOfQubits)

cr = ClassicalRegister(numberOfQubits)

circuit = QuantumCircuit(qr, cr)

circuit.h(qr[0])

circuit.cx(qr[0], qr[1])

circuit.cx(qr[1], qr[2])

circuit.measure(qr[0], cr[0])

circuit.measure(qr[1], cr[1])

circuit.measure(qr[2], cr[2])

backend = Aer.get_backend('qasm_simulator')

job = execute(circuit, backend, shots=shots)

result = job.result()

print ("Results:")

Qdictres = result.get_counts(circuit)

print(Qdictres)

circuit.draw()

 46

sense = SenseHat()

sense.rotation = 180

sense.low_light = True

sense.show_message("3Q Entanglement")

R = [255, 0, 0] # Red

B = [0, 0, 255] # Blue

W = [255, 255, 255] # White

Create a default Qdict dictionary with all values 0

global lst

lst = [bin(x)[2:].rjust(numberOfQubits, '0') for x in range(2**numberOfQubits)]

values = [0]*pow(2,numberOfQubits)

Qdict = dict(zip(lst,values))

Update the dictionary with the actual dictionary values sent to the function.

Qdict.update(Qdictres)

Scale by dividing by 1024 (shots) - For now assuming 1024, which is set by the sh parameter.

Qdict.update({m: (1/sh) * Qdict[m] for m in Qdict.keys()})

print(Qdictres)

print(Qdict)

Defining the display colors.

red = (255, 0, 0)

green = (0, 255, 0)

blue = (0, 0, 255)

sense.clear()

sense.rotation = 90

Writing to the SenseHat display pixels.

for key in Qdict:

 y=7-int(key,2) # Cycle through the states

 for x in range (0,8): # Cycle through the pixels

 47

 val = ((x+1)*128)-Qdict[key] # The difference between the state result and the pixel x

position

 if val<0:

 #If the state result is greater than the pixel, set pixel color red.

 color=red

 else:

 if val>0 and val<128:

 #If the state result is within the pixel, set pixel color gradient.

 fade = (255-(2*val),0,(2*val))

 color=fade

 else:

 #If the state result is less than the pixel, set pixel color blue.

 color=blue

 #Set pixel color.

 sense.set_pixel(x, y, color)

sleep(5)

sense.clear()

 48

APPENDIX D

3 Qubit Superposition Python Code

#!/usr/bin/env python

from sense_hat import SenseHat

from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister

from qiskit import execute

from qiskit import Aer

from time import sleep

import numpy as np

numberOfQubits = 3

shots = 1024

qr = QuantumRegister(numberOfQubits)

cr = ClassicalRegister(numberOfQubits)

circuit = QuantumCircuit(qr, cr)

circuit.h(qr[0])

circuit.h(qr[1])

circuit.h(qr[2])

circuit.measure(qr[0], cr[0])

circuit.measure(qr[1], cr[1])

circuit.measure(qr[2], cr[2])

backend = Aer.get_backend('qasm_simulator')

job = execute(circuit, backend, shots=shots)

result = job.result()

print ("Results:")

Qdictres = result.get_counts(circuit)

print(Qdictres)

circuit.draw()

sense = SenseHat()

 49

sense.rotation = 180

sense.low_light = True

sense.show_message("3Q Superposition")

R = [255, 0, 0] # Red

B = [0, 0, 255] # Blue

W = [255, 255, 255] # White

Create a default Qdict dictionary with all values 0

global lst

lst = [bin(x)[2:].rjust(numberOfQubits, '0') for x in range(2**numberOfQubits)]

values = [0]*pow(2,numberOfQubits)

Qdict = dict(zip(lst,values))

Update the dictionary with the actual dictionary values sent to the function.

Qdict.update(Qdictres)

Scale by dividing by 1024 (shots) - For now assuming 1024, which is set by the sh parameter.

Qdict.update({m: (1/sh) * Qdict[m] for m in Qdict.keys()})

print(Qdictres)

print(Qdict)

Defining the display colors.

red = (255, 0, 0)

green = (0, 255, 0)

blue = (0, 0, 255)

sense.clear()

sense.rotation = 90

Writing to the SenseHat display pixels.

for key in Qdict:

 y=7-int(key,2) # Cycle through the states

 for x in range (0,8): # Cycle through the pixels

 val = ((x+1)*128)-Qdict[key] # The difference between the state result and the pixel x

 50

position

 if val<0:

 #If the state result is greater than the pixel, set pixel color red.

 color=red

 else:

 if val>0 and val<128:

 #If the state result is within the pixel, set pixel color gradient.

 fade = (255-(2*val),0,(2*val))

 color=fade

 else:

 #If the state result is less than the pixel, set pixel color blue.

 color=blue

 #Set pixel color.

 sense.set_pixel(x, y, color)

sleep(5)

sense.clear()

 51

APPENDIX E

1 Byte Random Number Generator Python Code

Open Source qRNG link: https://github.com/ozaner/qRNG

import qrng

qrng.set_provider_as_IBMQ('')

qrng.set_backend()

random_number = qrng.get_random_int(0,255)

from sense_hat import SenseHat

sense = SenseHat()

sense.rotation = 180

sense.low_light = True

sense.show_message("1 Byte Random")

sense.show_message(str(random_number))

 52

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	1. OVERVIEW
	1.1. Identification of the need
	1.2. Definition of the problem
	1.2.1. Functional requirements
	1.2.2. Performance requirements
	1.2.3. Constraints

	1.3. Conceptual solutions
	1.3.1. Literature Review
	1.3.2. Concepts

	1.4. Physical architecture

	2. WORK PLAN
	2.1. Work Breakdown Structure (WBS)
	2.2. Responsibility Matrix (RM)
	2.3. Project Network (PN)R
	2.4. Gantt char
	2.5. Costs
	2.6. Risk assessment

	3. SUB-SYSTEMS
	3.1. Electrical & Electronics Engineering
	3.1.1. Requirements
	3.1.2. Technologies and methods
	3.1.4. Physical architecture
	3.1.5. Materialization
	3.1.6. Evaluation

	3.2. Computer Engineering
	3.2.1. Requirements
	3.2.2. Technologies and methods
	3.2.4. Physical architecture
	3.2.5. Materialization
	3.2.6. Evaluation

	4. INTEGRATION AND EVALUATION
	4.1. Integration
	4.2. Evaluation

	5. SUMMARY AND CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX C
	APPENDIX D
	APPENDIX E

